92 Item(s) found

Generator Brush Collector Ring’s Arc Flash Hazard, A Safety Concern!

Generator Brush Collector Ring’s Arc Flash Hazard, A Safety Concern!

For some types of generator exciter systems, collector rings and brushes are used to provide energy from the exciter to the rotating field. The brushes wear down and constantly need to be replaced with the unit on-line and while brush/ring assembly is still energized, a risky and unsafe maintenance operation and may cause a serious harm. A potential shock and arc-flash hazard. This presentation addresses the important and dangerous maintenance of worn-down collector rings and brushes, electrical safety, lack of standards and guidelines, and a first possible calculation method.

A Comprehensive Approach to Protective Device Coordination

A Comprehensive Approach to Protective Device Coordination

The design, sizing, and regulation of the protection system are still one of the major challenges for the integrity and continuity of operation of the power system despite the continuous technology evolution.  Protection system shall be capable to continuously monitor the power system, operate quickly and selectively under hundreds of transitory conditions for any type of fault without false trips with the objective to minimize outages, improve safety, and maximize service continuity. This presentation covers a real case study for an expansion of a brownfield industrial installation with new equipment that prompted the need for modification of existing protective device settings thus, requiring revision and re-validation of the coordination studies. The case study will demonstrate how ETAP software features and capabilities were utilized to verify the new / recommended settings to address the protection & coordination objectives and arc flash hazard impact.

ABB FCL Application Engineering for IS-Limiters

ABB FCL Application Engineering for IS-Limiters

This presentation will feature covert ABB Fault Current Limiter (FCL) application engineering for Is-limiters. We will explain the fault current limiter technology by using the well-known ABB FCL Is-limiter. The FCL technology will be introduced, how it clears a short-circuit fault current compared to a standard circuit breaker, and the major components of an FCL. The theory of the application engineering process and the calculation of the tripping value for an FCL will be introduced. Based on an actual customer project, it will be shown how ETAP has facilitated the complex FCL application engineering, and examples will be provided of how the real tripping value for a fault current limiter is determined. The session will conclude with an overview of how etap can already be used today for an FCL application engineering and what will be enhanced in the future.

Protection & Selectivity in Industrial Facilities

Protection & Selectivity in Industrial Facilities

PETRONAS RAPID project is the largest oil & gas refinery and petrochemical plant in Malaysia which is powered by a 1200MW utilities plant and connected to a 275kV Grid supply. The integrated ETAP model for the RAPID complex reached up to 5000 buses that consist of various distribution voltages from 400V up to 275kV. Protection Coordination evaluation study for the RAPID complex was performed using “PD Sequence-of-Operation” to identify abnormal relay behavior, which may not be observed in the conventional TCC curve. When simulating earth fault at 275kV system, there is sympathetic relay operation at all 275kV healthy feeders due to circulating earth fault current. The circulating earth fault current is more than 1pu, which will potentially cause a broader outage to the RAPID complex. Further analysis has been performed by the author and academician experts to ascertain the root cause of the circulating earth fault current. This presentation will discuss the root cause of sympathetic relay operation during 275kV earth fault simulations and the recommended solutions to mitigate the sympathetic operation. This will help engineering design firms and plant operators clearly understand the protection relay behavior during faults by utilizing ETAP special features.

Protection Coordination at Panama Mina de Cobre

Protection Coordination at Panama Mina de Cobre

Design and commission of a green-site power system including protection coordination for the entire site and implementation of IEC61850 communications, inter-tripping, inter-locking and protection blocking schemes.

Review Process in Protection Coordination Studies

Review Process in Protection Coordination Studies

A practical example of an internal review of a protection coordination study, including the definition of protective device settings & characteristics.

Reactive Power based LCOE Analysis

Reactive Power based LCOE Analysis

High penetration of solar PV energy fed into an electrical grid brings its share of challenges making the grid volatile which requires stabilizing variable energy. This presentation addresses one such challenge, of voltage profile improvement with reactive power compensation at the point of interconnection. A solar PV plant is rated in terms of power (either AC or DC) and is typically not rated for their reactive counterparts (MVAr). IEEE 1547/UL 1741 compliant inverters will typically not have reactive power capability and operate with a unity power factor. Although modern inverters have a capacity to supply reactive power in the range of +0.9 lead/-0.9 lag, the PV plant is rated based on the AC power supplied by the inverter at unity PF. Operational data sourced from various plants in India suggest that a typical utility-scale PV plant provides reactive energy in the range of 7% to 10%. This leads to an inherent error in the per-unit cost calculation, as when the inverter providing the reactive power, the active power is hampered. This paper showcases a cost-to-benefit analysis of various scenarios, such as unity power.

AC Arc Flash Analysis for a Datacenter Network in Italy to determine the PPE for Workers using ETAP

AC Arc Flash Analysis for a Datacenter Network in Italy to determine the PPE for Workers using ETAP

Arc Flash Analysis was performed on a new datacenter building in Italy, calculating Incident Energy and Arc Flash Boundaries at several locations, from the main 15kV distribution switch gears down to the main LV distribution switchboard and diversionary panel boards in each segment. The studies were performed using ETAP Arc Flash software to identify the correct personal protection equipment (PPE) for engineering staff during maintenances operations. Standards applied include: NFPA 70E-2021, IEEE 1584-2018, IEC 60909 (2016).

AC and DC Arc Flash Methods for Renewable Energy Systems

AC and DC Arc Flash Methods for Renewable Energy Systems

This presentation will address the difficulties and lessons learnt on performing arc flash analysis using available methods (outside the voltage limits of IEEE 1584-2018 standard) on a 2.3 MW PV generation facility. The analysis includes system modeling, short-circuit, arc flash (both AC and DC) using various applicable calculation methods that best fit this application along with available tools in ETAP and generating worst-case arc flash deliverables.

Konexa's Digital Grid Journey

Konexa's Digital Grid Journey

Konexa rolling out its integrated distribution model with multiple DISCOs across Nigeria. In its sub-concession area, Konexa will develop embedded generation capacity (solar PV), and invest in the distribution network (medium voltage line, distribution transformers, injection substations) and last mile reticulation (low voltage lines, smart metering infrastructure). In addition, Konexa will invest in and implement IT & OT systems and processes to drive operational efficiency and significantly reduce ATC&C losses. The first phase of the project would serve about 7,000 customers (C&I and residentials).