Top Products
Filter by
Didn't find what you are looking for? We're here to help!
131 Item(s) found
Learn how ETAP DC Arc Flash Analysis software calculates the incident energy for photovoltaic systems, while considering different methods such as Maximum Power, Stokes and Oppenlander, Paukert, DGUV-I-203-077. This presentation shows how ETAP applies the DC arc incident energy models developed in IEEE "Methods for Evaluating DC Arc Incident Energy in Photovoltaic Systems"
Learn how engineers use ETAP Harmonic Analysis software to simulate harmonic current and voltage sources, identify harmonic problems, reduce nuisance trips, design, and test filters, and report harmonic voltage and current distortion limit violations on balanced or unbalanced systems. Additionally, for transmission and distribution system operators, Harmonic Grid Code automates harmonic analysis for detailed power quality assessment reporting demonstrating the generation facility is designed to comply with applicable harmonic limits. Study reports include worst-case incremental and total harmonic distortion, frequency-dependent Thevenin Equivalent at PCC, and color-coded impedance loci charts.
The variable nature of renewable energy introduces power quality concerns, including frequency and voltage control, that may negatively impact the reliable performance of a power system. Grid codes, interconnection, or evacuation criteria must be followed during the proposed system design and continue to maintain compliance under grid-connected operation. ETAP Grid Code is a model-driven solution that includes software tools and control hardware to ensure local grid codes or standards compliance throughout the power system design and operations lifecycle.
Learn how to determine optimal cable sizes, physical attributes, and maximum ampacity using ETAP’s Underground Raceway System module, ensuring that cables in duct banks or directly buried are operating within their maximum potential capacity. The advanced graphical interface allows for design of cable raceway systems to meet existing and future needs by using precise calculations to determine the required cable sizes, physical capabilities, and maximum derated capacity / ampacity. In addition, transient temperature analysis computes temperature profiles for cable currents, reducing the risk of damage to cable systems under emergency conditions. All cable steady-state temperature calculations are based on the Neher-McGrath Method and the IEC 60287 Standard.
Learn how to determine optimal cable sizes, physical attributes, and maximum ampacity using ETAP’s Underground Raceway System module, ensuring that cables in duct banks or directly buried are operating within their maximum potential capacity. In addition, transient temperature analysis computes temperature profiles for cable currents, reducing the risk of damage to cable systems under emergency conditions. All cable steady-state temperature calculations are based on the Neher-McGrath Method and the IEC 60287 Standard.
This webinar outlines how ETAP Microgrid Control Solution devises and implements adaptive strategies to enable a smooth transition between grid-connected and islanded modes during unplanned islanding.
This webinar introduces an integrated model-driven approach for engineers and managers to design and operate power systems. ETAP’s Digital Twin Platform combines electrical, mechanical, and thermal properties with intelligent visualization for modeling, design, automation, and real-time predictive analysis. Learn how ETAP’s unique multi-dimensional database eliminates the need for hundreds of copies of the project file, by providing unlimited graphical presentations, configurations, data revisions, loadings, generations and operational values within the same project database. Moreover, ETAP unified platform allows simultaneous analysis of the network under various conditions.
Learn how owners, operators, and planners utilize ETAP GIS to better design, analyze, and expand their networks. We will discuss how to include transmission, sub-transmission and distribution networks in the same electrical model and solve the combined networks.
ETAP's intelligent electrical single line diagram (iSLD) is a multi-layered one-line view of the digital-twin, that includes advanced functionality and awareness of the device's characteristics and system behavior. It is an active blueprint and the foundation of your digital transformation journey. A Single-Line Diagram (SLD) is the ultimate user-interface to model, visualize, collaborate, and analyze electrical networks.
A 5 minute demo on how to shorten the project duration for power system modeling and studies, from months to weeks, utilizing ETAP Network Project Management (NetPM™), a platform for collaborative engineering.