Top Products
Filter by
Didn't find what you are looking for? We're here to help!
306 Item(s) found
The all-in-one software suite for electrical engineering.
Conform to Grid Codes & Maintain Compliance from Design, Operations to Performance Design, Validate, Control, Audit
Cities of the future will soon account for 90% of the world’s population growth and 75% of its energy consumption. The pressure on critical resources will increase. The New Administrative Capital in Egypt launched one of the country’s most ambitious development projects to date, setting standards in smart city living is ADMS. ETAP ADMS will manage, control, visualize and optimize power distribution required to run critical smart services for city operators, citizens, workers, and visitors alike. Learn how ETAP ADMS is utilized to support long-term sustainable, efficient smart city services that will support a safer, more innovative, and more prosperous Egypt.
ETAP GridCode utilizes a progressive electrical digital twin with automated analysis, predictive calculations, network optimization, validation processes, and intelligent power plant control hardware to ensure local grid code compliance.
A practical example of an internal review of a protection coordination study, including the definition of protective device settings & characteristics.
Design and commission of a green-site power system including protection coordination for the entire site and implementation of IEC61850 communications, inter-tripping, inter-locking and protection blocking schemes.
Konexa rolling out its integrated distribution model with multiple DISCOs across Nigeria. In its sub-concession area, Konexa will develop embedded generation capacity (solar PV), and invest in the distribution network (medium voltage line, distribution transformers, injection substations) and last mile reticulation (low voltage lines, smart metering infrastructure). In addition, Konexa will invest in and implement IT & OT systems and processes to drive operational efficiency and significantly reduce ATC&C losses. The first phase of the project would serve about 7,000 customers (C&I and residentials).
This presentation defines and demonstrates the importance of remote data collection of protection relays for the security and reliability of large power system networks. Oman Electricity Transmission Company grid stations contain more than 5000 rapidly expanding protection relays installed. In case of tripping incidences, the protection system would isolate the faulty primary equipment by actuating the switchgear. These isolated equipment restorations can be done faster if protection relays’ fault records and events can be retrieved through remote access at any time. ETAP and OETC jointly worked to provide remote relay access and data retrieval. The protection system model and relay data feed in a relay management system solution, is called ETAP eProtect. This system is connected through IEC 61850 and IEC 60870-5-103 protocol to linked relays, events, and fault records. Fault records are stored in a database for detailed analysis and validation. This presentation discusses the challenges faced, technical requirements, and benefits of the solution.
High penetration of solar PV energy fed into an electrical grid brings its share of challenges making the grid volatile which requires stabilizing variable energy. This presentation addresses one such challenge, of voltage profile improvement with reactive power compensation at the point of interconnection. A solar PV plant is rated in terms of power (either AC or DC) and is typically not rated for their reactive counterparts (MVAr). IEEE 1547/UL 1741 compliant inverters will typically not have reactive power capability and operate with a unity power factor. Although modern inverters have a capacity to supply reactive power in the range of +0.9 lead/-0.9 lag, the PV plant is rated based on the AC power supplied by the inverter at unity PF. Operational data sourced from various plants in India suggest that a typical utility-scale PV plant provides reactive energy in the range of 7% to 10%. This leads to an inherent error in the per-unit cost calculation, as when the inverter providing the reactive power, the active power is hampered. This paper showcases a cost-to-benefit analysis of various scenarios, such as unity power.