314 Item(s) found

Learn how EEEngineering uses ETAP to transform power studies into engaging, interactive presentations

Learn how EEEngineering uses ETAP to transform power studies into engaging, interactive presentations

In most cases, SCCAF (Short Circuit Coordination Arc Flash) studies are done by engineering firms, which then submit reports to facility owners. The challenge is that those reports tend to be lengthy (up to 5,000 pages), not engaging, and hard to grasp for facility personnel. ETAP's powerful graphical and presentation tools can help make those reports livelier, informative, and more engaging. This case study will discuss how you can summarize lengthy power studies reports within just a 30-minute interactive meeting, and highlight how the final ETAP model can be used, with its powerful graphical interface and presentation tools, including Data Blocks, Multiple Presentation layers, Sequence of Operations, and Arc flash calculator.

How Nexamp Energy uses ETAP for higher quality and accuracy in BESS DC arc flash analysis

How Nexamp Energy uses ETAP for higher quality and accuracy in BESS DC arc flash analysis

Engineers face unique challenges when calculating DC Arc Flash incident energy for Battery Energy Storage Systems (BESS). Battery short circuit current is highly variant, and factors such as battery chemistry, and how the installation arrangement of BESS have significant differences in short circuit behavior. As well, traditional methods of calculating DCAF have been determined to fall short when it comes to BESS. In this demonstration, these variations will be discussed, including PPE considerations. Following this, a demonstration of the Transient DC Arc Flash solution provided by ETAP solutions will be presented. The presentation will show the usefulness of model validation, and the importance of high quality analysis methods to provide better accuracy in DC AF analysis for BESS.

Learn how Mangan determines the optimal arc flash mitigation method for each project using ETAP

Learn how Mangan determines the optimal arc flash mitigation method for each project using ETAP

Multiple arc flash incident energy mitigation methods are available, but how does an engineer know which is best for their client? This presentation identifies an approach to follow to pick the method, considering effectiveness, practicality, feasibility, and overall best option for realistic study results. With extensive experience with arc flash studies for many clients of all sizes, Mangan provides a real world demonstration of a project for a refinery client. The interplay between motor starting and arc flash analysis was evaluated, and mitigation recommendations were customized for the system. The challenges encountered during mitigation are identified, and the proposed solution is analyzed using ETAP Load Flow, Short Circuit, Arc Flash and Motor Acceleration Analysis. Safe motor operation, safe motor starting and arc flash protection are provided through customized mitigation methods and thoughtful system design.

Red Sea Project: Learn how SEPCOIII is optimizing renewable plant control & power systems with ETAP

Red Sea Project: Learn how SEPCOIII is optimizing renewable plant control & power systems with ETAP

This Red Sea Project is a groundbreaking endeavor in Saudi Arabia under the Saudi Vision 2030 economic development program. The project is powered by a fully renewable energy system, including large-scale solar photovoltaic (PV) system and a substantial 1.3 GWh energy storage system, effectively providing 100% clean energy to the development. As the Engineering, Procurement and Construction firm for this project, SEPCOIII has been involved with the design and construction of a wide range of permanent utility assets, including support facilities such as desalination plants, power generation facilities and distribution networks for water, electricity and natural gas. In this presentation, learn how SEPCOIII relied on ETAP's Advanced Distribution Management System (ADMS) to assist with the technology challenges for the project’s distributed energy power system, and how the solution is being used to manage and supervise the power distribution system to achieve better optimizations and improve system stability.

Modeling and Verification of Benchmark Test Feeder Systems with DER in ETAP

Modeling and Verification of Benchmark Test Feeder Systems with DER in ETAP

Washington State University collaborates with IIT and ETAP on developing benchmark test feeder systems for the DOE UI-ASSIST project, showcasing ETAP's capabilities through the design and modeling of the IIT Rural Benchmark and modified IEEE 123-node systems, with validation conducted across MATLAB/SIMULINK and ETAP for various distribution studies.

Energy Efficiency Optimization for Offshore Oil & Gas Installations

Energy Efficiency Optimization for Offshore Oil & Gas Installations

Energy opportunity lies in leveraging emerging technologies like distributed energy resources analytics, blockchain, and AI to enhance energy efficiency, demonstrated by a 9% reduction in energy consumption and increased equipment life at Block 5 of Al Shaheen Oil Field through ETAP's power and demand management, network self-healing capabilities, and integration of new equipment and services.

Fuel Cell Modeling, Sizing and Standards in Micro-grid

Fuel Cell Modeling, Sizing and Standards in Micro-grid

Fuel cell and electrolyzer systems, employed from small-scale to grid-level applications, serve various grid support functions and energy optimization objectives, relying on intelligent energy management systems (EMS) and control strategies, yet face challenges due to the absence of standardized distributed energy resources sizing and lack of high-fidelity circuit model data, which will be addressed in the upcoming presentation, alongside discussions on cell-level fuel cell modeling in ETAP and its application in micro-grid optimization for net zero energy-emission adhering to relevant standards/grid-codes.

Optimization of Battery Energy Storage System Sizing for Hybrid System in PHU QUY Island

Optimization of Battery Energy Storage System Sizing for Hybrid System in PHU QUY Island

To meet increasing load demands on Phu Quy island, plans involve installing additional wind and solar power plants, yet due to renewable energy's dependence on weather conditions, the diesel power plant remains crucial, prompting a study on the optimal size of Battery Energy Storage Systems (BESS) to support renewable energy integration and optimize costs.

Predictive Analysis in Electric Distribution Systems with presence of Distributed Generation

Predictive Analysis in Electric Distribution Systems with presence of Distributed Generation

Incorporating Distributed Generation (DG) into distribution systems poses challenges due to the variability of renewable sources and fault occurrences, necessitating real-time monitoring and forecasting. Using ETAP-RT software, this study simulates a DG system's real-time behavior, including four events like grid contingencies and DG integration, offering insights for network planning and operation.