277 Item(s) found

ETAP iSLD - Crear y actualizar diagramas unifilares digitales inteligentes Parte 3

ETAP iSLD - Crear y actualizar diagramas unifilares digitales inteligentes Parte 3

El diagrama digital unifilar inteligente (iSLD), es la representación de su sistema de energía y la base de todos sus estudios de ingeniería eléctrica. Discutiremos su importancia, qué lo hace inteligente, por qué es crucial mantenerlo actualizado y cuál es la mejor manera de hacerlo.

ETAP NetPM - Explained in 5 minutes

ETAP NetPM - Explained in 5 minutes

A 5 minute demo on  how to shorten the project duration for power system modeling and studies, from months to weeks, utilizing ETAP Network Project Management (NetPM™), a platform for collaborative engineering.

Parte 2 - Acortar el tiempo de entrega del proyecto y mejorar la eficiencia del diseño

Parte 2 - Acortar el tiempo de entrega del proyecto y mejorar la eficiencia del diseño

Aprenda cómo acortar el tiempo para el modelado y los estudios del sistema de potencia de meses a semanas, utilizando ETAP Network Project Management (NetPM™), una plataforma para la ingeniería colaborativa.

ETAP 21 - Aspectos destacados en módulos de análisis y diseño para sistemas eléctricos

ETAP 21 - Aspectos destacados en módulos de análisis y diseño para sistemas eléctricos

ETAP 21.0 ofrece un nuevo conjunto de módulos de análisis de potencia integrados, capacidades de dimensionamiento eléctrico, automatización y soluciones de operaciones. En este seminario web, demostramos nuevas funciones y soluciones de diseño, análisis y simulación, además de muchas de las mejoras y mejoras que permiten ahorrar tiempo.

Harmonic Mitigation Project in Steel Plant

Harmonic Mitigation Project in Steel Plant

This presentation aims to explain the necessary steps to comply with national grid code standards; an exemplary case of a steel manufacturing plant with intensive use of induction furnaces and a THD that exceeded the Grid Code's limits. This presentation highlights compliance, analysis, engineering (electrical power system studies), and equipment designed to comply with the technical criteria and mitigation. ETAP was used to size a filter to mitigate harmonics and improve the power factor for 34.5 kV transformers for grid code compliance. 


Efficient Design & Analysis with CoSimulation

Efficient Design & Analysis with CoSimulation

Co-simulation is the cooperative simulation of a system model through different software packages. Collaborative simulation, as such, spans more physics domains and offers more insight than single-domain engines alone. Therefore, the collective composition of its parts enables multi-domain, multi-physics simulation results.​ETAP CoSim™ enables ETAP simulation engines to collaborate and interact. For example, the ETAP Time Domain Power Flow can co-simulate with ETAP Harmonic Analysis to assess harmonics distortion over time. ETAP CoSim platform also enables ETAP and 3rd party tools to co-simulate and solve large, complex, and multi-disciplinary system models—collectively via an efficient API surface. The ability to co-simulate with third-party software extends existing software capabilities into the multi-physics domain and greater situational awareness. This solution presentation will introduce the concepts of co-simulation and the flexible ETAP CoSim platform. The presentation will also highlight commercial use-cases of Phasor and Electromagnetic co-simulation using emtCoSim™ and Controller Hardware-in-the-Loop (CHIL).

Integrated Stability & Protection Sequence of Operation

Integrated Stability & Protection Sequence of Operation

Many protection functions such as over/under frequency, out-of-step, generator loss of excitation are set based on power system dynamic characteristics. These protection functions were conventionally set with the assumption that, system dynamics are predictable using simplistic and aggregated models. Higher penetration of distributed energy resources (DERs) has made power system dynamics considerably more complex to predict through conventional approaches. ETAP offers a new solution to perform unified protection and transient stability study to accurately capture interactions between system dynamics and protection system. This solution allows protection engineers and network planners to 1- tune protection settings to act properly during system dynamics, 2- design and test remedial protection schemes, 3- evaluate all protection functions such as out-of-step, overcurrent and generator loss of excitation protection function and 4- perform grid code studies that require evaluating DER performance along with its protection system.

GIS Modeling & DNA

GIS Modeling & DNA

The traditional power system model and desktop-based analysis work well for greenfield projects. It becomes incredibly challenging to make use of the modeling in a brownfield project. The network routes are limited by existing infrastructure and road layouts. A new design for a built-up urban area is possible by multiple iterations of cable lengths, optimal routes, placement of electrical assets, etc. The iterative process becomes more manageable by having a georeferenced map of all interest areas with high accuracy. GIS-based software becomes extremely helpful to undertake a brownfield design. However, the challenge remains in extracting the GIS data into a power system software in executing the electrical analysis. ETAP is breaking ground in this avenue. EnergyTron is closely working to implement this on a large scale, potentially the largest in the world for this type of project analysis.

Remedial Action Scheme for Integrated G-T-D System

Remedial Action Scheme for Integrated G-T-D System

Due to system shutdowns stemming from drastic frequency decline associated with the loss of relatively large generating units, Fortis TCI embarked on exploring opportunities to curtail these events to improve system response. This was achieved through detailed modeling and validation of system parameters with event data gathered from previous events.  Carefully implemented Remedial Action Schemes are currently explored to provide cost-saving benefits; significantly improving frequency response, without the need for larger spinning reserves and minimize investment costs for BESS.

Enterprise Asset Management & Automated Fault Analysis

Enterprise Asset Management & Automated Fault Analysis

Solution introduction & case study presentation. Remote Management of Protection Relays  - Improved Productivity & Compliance Benefits. This presentation aims to define and demonstrate the importance of the remote management of protection relays in large power system networks. A protection system is vital for network security and reliability. A centralized system should aim to get each protection relay setting, records, logic, and status quickly and efficiently so that all these data can be analyzed, managed, and utilized. In OETC grid stations, there are more than 4000 protection relays installed.  OETC network is rapidly expanding every year. There are incidences of tripping due to various reasons. These isolated equipment restorations can be done faster if protection relays fault records, events retrieved through remote access. ETAP and OETC are jointly working on conceptualizing and implementing a fully functional system for remote relay access and data retrieval – eProtect. This presentation discusses the technical requirements, networking solutions, cybersecurity requirements, features, testing, validating system requirements, and detailed benefits. Challenges faced during implementation will be discussed together with their resolution.