

AC Arc Flash Comparison Case # 3

Comparison of AC Arc flash results against Hand Calculations based on DGUV Information 203-077

Excerpts from Validation Cases and Comparison Results (TCS-SC-521)

Highlights

- Comparison of ETAP Electrical Arc Energy (Warc) results against hand calculations. The test case is based on a published power system from "Thermal hazards due to electric fault arcing," published by Deutsche Gesetzliche Unfallversicherung Spitzenverband (DGUV) 203-077", Example 5.1 [1]
- Comparison of Short circuit power (P_k) •
- Comparison of Electric arc power (P_{arc})
- Comparison of Normalized Arc power (k_p) ٠
- Comparison of Current limitation (k_B) •
- Comparison of PPEaA protection level at the point of arcing •

System Description

This example deals with work performed on a low voltage distribution system at a transformer station with rated capacity of 630 kVA protected by a Fuse with operating class gTr AC 400V. The results from the short-circuit current calculation according to IEC-60909-2016 [3] at the work location yield a prospective value of I"k3.max $(maximum) = 24.5 \text{ kA and } I''_{k3,min} (minimum) = 21.6 \text{ kA respectively. The R/X ratio for the network impedance}$ in the fault circuit equates to approximately 0.27. The input parameters such as conductor spacing, working distance and trip time are taken from Figure 3 when working in the vicinity of the work location. The one-diagram in ETAP is shown in Figure 1. This document is an excerpt from TCS-SC-521 [2]

Figure 1: One Line diagram from Low Voltage distribution system for Work Location 1 (Worst-Case)

Copyright © 2005 to 2023 Operation Technology, Inc. All Rights Reserved.

Comparison of Results

The following tables of comparison show the differences between ETAP Results and those published in the standard (Worst-Case method). Please note that the maximum deviation in the results is about 0.65 % due to the accuracy of significant figures in ETAP.

For a fault at Work location1	Scenario -1 (Worst-Case Method)		
	Hand Calc	ETAP	% Diff.
Electrical arc energy (W _{arc}) kJ	690	694.473	0.65
Short circuit power (P _k) MW	16.97	16.97	0.0
Electric arc power (P _{arc}) MW	6.1	6.1	0.0
Normalized Arc power (k _p)	0.36	0.36	0.0
Current limitation (k _B)	0.5	0.5	0.0
PPEaA protection level at the point of arcing $(W_{arc, prot_APC1}) kJ$	252	252	0.0
PPEaA protection level at the point of arcing $(W_{arc, prot_APC2})$ kJ	480	480	0.0

Table 1: Comparison of ETAP results against hand calculation results based on the Table A 5-1

A sample arc flash label based on the above results from table 1 is shown in Figure 2.

Figure 2: Arc Flash Label based on Worst-Case method.

Work location	630 kVA Lo	w voltage distribution system	Prepared by: John Doe			
Work order	Connection measureme	/disconnection of output circuitry, ent and testing or cleaning tasks	Date:	29 No	ov. 2019	
Calculation			Parameter		Result (worst-	Result with a precise calculation
Network parameter		Nominal voltage	Un		400V	according to [21]
Equipment geometry		Conductor spacing	d d		60 mm	
Short-circuit current calc	ulation	Max. short-circuit current	I"k3.max		24.5 kA	
		Min. short-circuit current	I"k3,min		21.6 kA	
		R/X ratio	R/X		0.27	
Current limitation			k _B		0.5	0.633
Minimum fault current		$I_{\rm k, arc} = k_{\rm B} \cdot I_{\rm k3, min}^{\prime\prime}$	I _{k, arc} =		10.8 kA	13.67 kA
Trip time for the overcurrent protection device (circuit breaker set value/ Trip time from the protection fuse characteristics)		t _k		0.113 s	0.045 s	
Short-circuit power		$S_k'' = \sqrt{3} \cdot U_{Nn} \cdot I_{k,3,max}''$	$S_k'' =$		16.97 MVA	
Normalized arc power		$k_{\rm p} = \frac{0.29}{(R/X)^{0.17}}$	k _p =		0.36	0.338
Electric arc power		$P_{\rm arc} = k_{\rm p} \cdot S_{\rm k}''$	$P_{\rm arc} =$		6.1 MW	5.7 MW
Electric arc energy (expected value) $W_{arc} = k_p \cdot S_k'' \cdot t_k$		$W_{\rm arc} =$		690.3 kJ	258 kJ	
Working distance		a		300 mm		
Standardized PPE test le	vel		W _{arc, test_APC 2} =	-	320 kJ	
			Warc, test_APC 1 =		168 kJ	
Transmission factor		k _T		1.5		
PPEaA protection level at the point of arcing $W_{\text{arc, prot}} = k_{\text{T}} \cdot \left(\frac{a}{300 \text{mm}}\right)^2 \cdot W_{\text{arc, test}}$		$W_{\rm arc, \ prot_APC \ 2} = 480 \ kJ$				
		(300 mm)	Warc, prot_APC 1	-	252 kJ	
Comparison			Warr < Warr and	t ADC 3	NO	YES
			$W_{\rm arc} < W_{\rm arc, pro}$	t APC 1	NO	NO

Table A 5-1 Results of the calculations for $W_{\rm arc}$ and $W_{\rm arc, prot}$ for Example 5.1 (630 kVA transformer station)

Figure 3 Summary of results based on work example from [1]

Copyright © 2005 to 2023 Operation Technology, Inc. All Rights Reserved.

Page 3 of 6

etap

For electric arc power, the worst-case calculation (Scenario-1) yields $P_{arc} = 6.1$ MW approximately which corresponds to a normalized arc power of $k_p = 0.36$ based on the current limiting factor $k_B = 0.5$. With a short-circuit duration of $t_k = 0.113$ seconds, the resulting expected value of the converted electric arc energy at the work location (fault location) is $W_{arc} = 690$ kJ approximately.

Figure 4: Scenario 1 (Worst-Case Method)

Copyright © 2005 to 2023 Operation Technology, Inc. All Rights Reserved.

Page 4 of 6

For electric arc power calculated based on Schau, H.; Halinka. A method (Scenario-2) summarized in Table2; the current limiting factor ($k_B=0.63$) is evaluated more precisely greater than 0.5. This leads to significantly low arc energy levels for clearing times below 1 second. The resulting expected value for arc energy is then $W_{arc_1} = 258$ kJ approximately.

Figure 5 Scenario 2 (Schau.H.; Halinka.A Method)

Copyright © 2005 to 2023 Operation Technology, Inc. All Rights Reserved.

Page 5 of 6

The following tables of comparison show the differences between ETAP Results and those published in the standard (Schau, H.; Halinka. A). Please note that the maximum deviation in the results is about 0.65 % due to the accuracy of significant figures in ETAP.

For a fault at Work location1	Scenario-2 (Schau, H.; Halinka. A)			
	Hand Calc	ETAP	% Diff.	
Electrical arc energy (W _{arc}) kJ	258	259.535	0.65	
Short circuit power (P _k) MW	16.97	16.97	0.0	
Electric arc power (P _{arc}) MW	5.7	5.7	0.0	
Normalized Arc power (k _p)	0.338	0.34	0.0	
Current limitation (k _B)	0.633	0.63	0.0	
PPEaA protection level at the point of arcing $(W_{arc, prot_APC1}) kJ$	252	252	0.0	
PPEaA protection level at the point of arcing $(W_{arc, prot_APC2}) kJ$	480	480	0.0	

Table 2: Comparison of ETAP results against hand calculation results based on the Table A 5-1

Reference

- 1. "DGUV Information 203-077, Thermal hazards due to electric fault arcing. Guide for selecting Personal protective equipment" Published by: German Statutory Accident Insurance registered association (DGUV) <u>www.dguv.de/publikationen</u> Web code: p203077.
- 2. ETAP Short Circuit ANSI SC V&V Documents, Case Number TCS-SC-521.
- 3. "Short-circuit currents in three-phase a.c. systems Part 0: Calculation of currents", IEC-60909-0-2016 edition 2.0. ISBN 978-2-8322-3158-6.