Diseño y análisis integrados de CA y CD
SCADA, EMS, PMS, ADMS y SAS basados en modelos
Controladores inteligentes y sistema de gestión
Una plataforma unificada de gemelo digitalDiseño, Operación y Automatización
Quick Links
ETAP cable thermal analysis module can model single core and multiple core cable physical structure in details. Various cable thermal and metallic layer types and corresponding dimensions can be defined individually based on actual cable construction.
With the advanced web-based plot tools, the cable transient temperature plot can be generated and customized according to engineers’ requirement.
The enhanced interactive interface helps engineers to design and draw the raceway fast and intuitively. With the snapping guideline, conduits and raceways can be precisely located by dragging without entering the coordinates. Automatic dimension labeling expedites the generation of the raceway layouts without additional editing and annotating.
The cable capacity / ampacity calculation and cable sizing are based on the NEC accepted Neher-McGrath method and IEC 60287 standard for steady-state temperature calculation. The transient temperature calculation is based on a dynamic thermal circuit model. All of these calculations can handle multi-raceway systems and consider the effect of heat generated by neighboring cables and external heat sources.
Learn how to determine optimal cable sizes, physical attributes, and maximum ampacity using ETAP’s Underground Raceway System module, ensuring that cables in duct banks or directly buried are operating within their maximum potential capacity. In addition, transient temperature analysis computes temperature profiles for cable currents, reducing the risk of damage to cable systems under emergency conditions. All cable steady-state temperature calculations are based on the Neher-McGrath Method and the IEC 60287 Standard.
Learn how to save design time using the Raceway Rulebook to auto-layout cables within duct banks. Find out how to determine the optimal cable sizes, physical attributes, and maximum derated ampacity using Neher-McGrath method and IEC 287 standard.
Proper sizing and current derating ensures that cables operate to their maximum potential while providing secure and reliable operation. Learn about design and application requirements to properly size and analyze cable systems based on IEEE and North American cable standards and guidelines: IEEE 399, ICEA P-54-440, NEC NFPA 70
Proper sizing and current de-rating ensures that cables operate to their maximum potential while providing secure and reliable operation. This webinar covers cable sizing, current carrying capacity and electrical shock protection based on IEC and British standards.
This Cable Thermal Analysis webinar explains how to design cable systems to operate to their maximum potential while providing a secure and reliable operation.
Underground Raceway Systems helps engineers to design cable systems to operate to their maximum potential while providing secure and reliable operation.
The magnetic field exposure analysis tool uses balanced & unbalanced load-flow currents and angles to determine the location of the worst-case magnetic field exposure due to conductors in underground raceways.
Get an in-depth insight to our electrical engineering software by requesting a training course that suits you.
Discover Now