Specifications for Power System Analysis

전기 - 마스터 사양

조류계산, 고장해석, 보호기기 협조 및 아크플래시 해석 연구에 대해 다음의 Masterformat® Section 26 05 73 샘플 전력 계통 분석 연구를 활용합니다.

Adobe Reader PDF 형태 다운로드 하기

    Word 형태 다운로드 하기

ETAP/ Operation Technology 사에 승인을 받은 경우에 한해 해당 자료의 복제 또는 사용이 허용됩니다.


전력 계통 스터디 사양

조류 계산 스터디, 사고 스터디, 보호기기 협조, 아크플래시 해석

본 해석 사양 문서에는 조류계산 해석, 사고 해석, 보호기기 협조 및 아크플래시 위험 검토를 수행하기 위한 방법 및 절차가 포함되어 있습니다. 전문적인 판단은 반드시 해당 표준 및 지침에 따라 이루어져야 합니다. ETAP은 본 스터디 사양 문서의 사용 및 해석으로 인해 발생하는 모든 명시적 보증 또는 묵시적 보증,책임 및 의무를 지지 않습니다.
범례:
  • 노란색으로 표기된 사용자 정의 가능 정보
  • 녹색으로 표기된 옵션 정보

PART 1 - 소개

회사 & 전력 계통 정보를 여기에 입력하세요.

PART 2- 연구 목표

회사는 잠재적 위험을 식별하기 위해 아크 플래시 위험성 조사를 실시하여 기존 전기 안전 프로그램을 보완 / 강화하고 직원들을 위한 추가 안전 조치를 제공하고자 합니다. 분석 후에 회사는 권고사항을 검토하고 적절하게 구현할 것입니다.

PART 3 - 작업 범위

회사는 전력 계통 해석 스터디를 수행하기 위해 검증된 컨설턴트에게 제안을 요청하고 있습니다. 성공적인 컨설턴트는 다음과 같은 사항을 지원할 것입니다.

  1. ETAP 모델을 검증하고 필요한 경우 구축된 스터디를 업데이트합니다.
  2. 보호 계전기 설정 & 협조 해석 검증
  3. 아크플래시 스터디의 최종 권장사항
  4. 현장 방문
    1. 전력 계통 해석을 수행하는데 있어 취해져야 하는 단계를 결정하기 위한 안전 절차 및 설비 조건 검토
    2. 추가 데이터의 수집
    3. 기기 명판 정격의 검증

주의: 제안 요청서에 요구되는 작업에 적용되는 모든 규정을 숙지하는 것은 컨설턴트의 책임입니다.

해석은 다음 사항으로 구성됩니다.

  • 데이터 수집
  • 시스템 모델링
  • 모델 검증
  • 사고& 디바이스 책무 검토 스터디
  • 보호기기 협조 스터디
  • 아크플래시 위험 평가
  • 결과 및 권장사항에 대한 상세한 보고서를 포함하는 프로젝트 결과 자료

PART 4 - 입력데이터

  1. 전체 핵심 단선도면 (첨부 #)
  2. 스위치기어의 리스트 (첨부 #)
  3. 스위치기어 단선도면 (첨부 #)
  4. 이전 전력 계통 스터디 (첨부 #)
  5. 부하 운용일정 (첨부 #)
  6. 보호 계전기 설정 시트 (첨부 #)

PART 5 - 일반

5.1 요약
  1. 다음은 사고, 보호기기 협조 사고, 보호기기 협조 및 아크플래시 스터디를 위한 필요조건입니다. 전기 컨설턴트/계약자는 사용가능한 최악의 고장해석 전류값과 아크플래시 사고 에너지를 예측하기 위한 스터디를 수행해야 합니다. 최종 스터디는 모든 피더에 대하여 최종 전력기기 제출 및 최종 포설 도체 길이를 기반으로 생성됩니다.
  2. 최종 보고서의 결과를 기반으로 전기 컨설턴트/ 계약자는 보호기기 협조 및/또는 아크플래시 해석에 따라 필요한 모든 보호기기 설정을 조절해야 합니다.
  3. 전기 컨설턴트/계약자는 또한 아크플래시 해석의 일부로 제공된 모든 배전반 및 분전반에 아크플래시 PPE (개인 보호 기기)를 설치해야 합니다.
5.2 제출
  1. 다음 사항은 시스템 보호기기에 대한 승인 절차가 완료된 후에 제출되어야 하며 디지털 형식일 수 있습니다.
    1. 계산된 생산 보호기기 설정 보고서를 포함하는 완전한 입력 데이터 보고서
    2. 조류계산 해석
    3. 조류계산, 고장계산 & 아크플래시 해석기는 MS Excel 형식으로 보고됩니다. 고장계산 & 아크플래시 결과 해석기는 최악의 시나리오 조건 및 관련 결과를 표시합니다.
    4. 고장 계산 해석 및 디바이스 책무 & 기기 평가 보고서
    5. 계산 생산된 시간 전류 특성 곡선(TCC)를 포함하는 협조-해석 보고서
    6. 아크플래시 해석 보고서 및 개인 보호 기기 라벨
    7. 계산 소프트웨어 (프로젝트) 모델의 전자 사본
5.3 품질보증
  1. 분석은 섹션에 지정된 표준과 지침의 요구사항을 준수하는 강력한 전기 전력 계통 설계 및 분석 소프트웨어를 사용해야 합니다. 매뉴얼 계산은 허용되지 않습니다.
  2. 소프트웨어는 입증된 품질 보증 프로그램 하에서 개발되어야합니다. 소프트웨어 QA 프로그램은 UL과 같은 공인 인증 기관을 통해 ISO 9000을 준수해야 합니다. 소프트웨어 계산 및 엔지니어링 라이브러리는 U.S. Title 10 CFR #50, Appendix B를 준수하며 관련 소프트웨어 표준을 준수하는 것이 바람직합니다.
5.4 엔지니어링 자격 요건
  1. 유사한 기기를 사용하는 전기 시스템에서 유사한 규모의 성공적인 스터디를 수행한 스터디에 사용된 컴퓨터 소프트웨어를 적용한 경험이 있는 컨설턴트/엔지니어
  2. 프로젝트가 위치한 장소에서 허가를 받은 전문 엔지니어는 스터디의 감시 및 승인에 대한 책임을 집니다. 스터디의 모든 요소는 전문 엔지니어의 직접 감시 및 제어에 따라 수행되어야 합니다.
  3. 등록된 전문 전기 엔지니어는 기기 제조사 또는 공인 엔지니어링 회사가 수행합니다.
  4. 등록된 전문 전기 엔지니어는 전력 계통 해석을 수행한 경력이 최소 5년 이상이어야 합니다.
  5. 기기 제조사 또는 인증된 엔지니어링 회사는 과거 수행한 최소 10개 이상의 실제 아크플래시 위험 해석의 이름을 제출하여 아크플레시 위험 해석에 대한 경험을 입증해야 합니다.
5.5 참조
  1. 미국전기전자학회 (IEEE)
    1. 고장해석 전류 및 협조 시간 간격에 대한 IEEE 242
    2. 일반 스터디 절차에 대한 IEEE 399
    3. IEEE 141 - 산업 및 상업 전력 계통의 전기 전력 배전 및 협조에 대한 권장 지침
    4. IEEE 241 - 상업 시설 내 전기 전력 계통에 대한 권장 지침
    5. IEEE 1015 - 산업 및 상업 전력 계통에서 사용되는 저압 차단기에 적용하는 권장 지침
    6. IEEE 1584 - 아크플래시 위험 계산 수행 가이드
  2. 미국국립표준협회 (ANSI)
    1. ANSI C57.12.00 - 유입 자냉식 배전, 전력 및 전압 조정기용 표준 일반 필요조건
    2. ANSI C37.010 - 외함에 사용된 저압 교류 전력 차단기용 표준
    3. ANSI C37.41 - 대칭 전류 기본 등급에 교류 고압 차단기용 표준 애플리케이션 가이드
    4. ANSI C37.41 - 고압 퓨즈, 배전 외함 단극 에어 스위치, 퓨즈 연결해제 스위치 및 부대용품용 표준 설계 테스트
    5. 미국화재예방협회 (NFPA)
    6. NFPA 70 - 미국전기규격 (최신판)
    7. NFPA 70E - 작업장 전기 안전 기준

PART 6 - 소프트웨어 프로그램

6.1 전력 계통 해석 소프트웨어 프로그램 (소프트웨어)
  1. 소프트웨어는 품질 보증 프로그램을 갖추고 있어야 하며, 품질보증 감사를 받아야 합니다.
  2. 스터디는 승인된 소프트웨어의 최신 버전을 사용하여 수행되어야 합니다.
    1. ETAP 소프트웨어 (ETAP / Operation Technology, Inc 개발)
    2. 동일한 승인
  3. 소프트웨어 프로그램 필요조건
    1. 소프트웨어는 IEEE 399, IEEE 141, IEEE 242, IEEE 1015, IEEE 1584를 준수합니다.

PART 7 - EXECUTION

7.1 Power System Data
  1. Gather and tabulate the following input data to support the power systems study:
    1. Product Data for overcurrent protective devices involved in overcurrent protective device coordination studies.  Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
    2. Maximum fault contribution or Impedance of utility service entrance
    3. Electrical Distribution System Diagram:  In hard-copy and electronic-copy formats, showing the following:
      1. Circuit-breaker and fuse-current ratings and types
      2. Generator kilovolt amperes, size, voltage, and source impedance
      3. Cables: Indicate conduit material, sizes of conductors, conductor material, insulation, and length
      4. Motor horsepower and code letter designation according to NEMA MG 1
    4. Data sheets to supplement electrical distribution system diagram, cross-referenced with tag numbers on diagram, showing the following:
      1. Special load considerations, including starting inrush currents and frequent starting and stopping
      2. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability
      3. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve
      4. Generator thermal-damage curve
      5. Ratings, types, and settings of utility company's overcurrent protective devices
      6. Special overcurrent protective device settings or types stipulated by utility company
      7. Time-current-characteristic curves of devices indicated to be coordinated
      8. Manufacturer, frame size, interrupting rating in amperes rms symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers
      9. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays
      10. Panelboards, switchboards, motor-control center ampacity, and interrupting rating in amperes rms symmetrical
  2. Software shall have the ability to utilize typical data such as %Z, X/R ratios for transformers, etc. in case these values cannot be ascertained from existing documentation and/or field data collection.
  3. Various system operating configurations of the system including status of switching devices and load status (continuous, intermittent, spare), etc. shall be modeled as part of the project database using a configuration management tool.
  4. Study related scenarios including data revisions, engineering properties, study solution parameters & network topology shall be setup. In the event of system changes, these scenarios may be utilized by Company at a later date to re-run the studies.
7.2 Load Flow Study
  1. Load flow study should be performed to evaluate the system’s capability to adequately supply the connected load and prevent overloading of equipment.
  2. Compare equipment (transformers, cables, breakers, fuses) operating values against manufacturer’s specified maximum capability ratings whenever available.
  3. Provide a computer generated Alert View list/report which lists all equipment that is critically overloaded.
  4. Load Flow study should consider various operating conditions (scenarios) such as; maximum loading, minimum loading and normal loading.
  5. Provide a computer generated load flow analysis report that simultaneously provides power flow results between the different scenarios being evaluated.
7.3 Fault Study
  1. Software shall have the ability to generate a single Fault Current report that includes the Device Duty Evaluation as per ANSI/IEEE C37 standards.
  2. Calculate the maximum available short circuit current in amperes rms symmetrical at circuit-breaker positions of the electrical power distribution system.  The calculation shall be for a current immediately after initiation and for a three-phase bolted short circuit at each of the following:
    1. Switchgear, switchboard , busways, bus duct
    2. Distribution panelboard
    3. Branch circuit panelboard
  3. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project.  Include studies of system-switching configurations and alternate operations that could result in maximum fault conditions
  4. Calculate momentary and interrupting duties on the basis of maximum available fault current at each location:
    1. Electric utility’s supply termination point
    2. Incoming switchgear
    3. Unit substation primary and secondary terminals
    4. Low voltage switchgear
    5. Motor control centers
    6. Standby generators and automatic transfer switches
    7. Branch circuit panelboards
    8. Other significant locations throughout the system
  5. Calculations to verify interrupting ratings of overcurrent protective devices shall comply with IEEE 241 and IEEE 242
  6. Fault Study Report shall include
    1. EShow calculated X/R ratios and equipment interrupting rating (1/2-cycle) fault currents on electrical distribution system diagram.
    2. Calculation methods and assumptions including any adjustments used when considering resistance and impedance tolerances.
    3. One-line diagram of the system being evaluated with available fault at each bus
    4. Typical calculations
    5. Comparison of Short Circuit results from different scenarios in a single display
    6. Results, conclusions, and recommendations
  7. Device Duty Equipment Evaluation Report:
    1. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
    2. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in the standards to 1/2-cycle symmetrical fault current.
    3. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
    4. Software shall have the ability to generate a single Fault Current report that includes the Device Duty Evaluation as per ANSI/IEEE C37 standards
  8. Software shall utilize data revisions to track system data changes such as “As Found” and “Recommended” settings.
7.4 Protective Device Coordination Study
  1. Perform coordination study using approved computer software program.  Prepare a written report using results of fault-current study.  Comply with IEEE 399.
    1. Calculate the maximum and minimum 1/2-cycle short circuit currents
    2. Calculate the maximum and minimum interrupting duty (5 cycles to 2 seconds) short circuit currents
    3. Calculate the maximum and minimum ground fault currents
  2. Software shall be capable of plotting and diagramming time-current-characteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
  3. Software shall be able to perform a Sequence of Operation that evaluates, verifies, and confirms the operation and selectivity of the protective devices for various types of faults directly from the one-line diagram and via normalized Time Current Characteristic Curve views.
  4. Generate a report that highlights detected violations and concerns of equipment protection and device coordination:
    1. List possible corrections and adjustments of protective device settings
    2. Provide violation descriptions with each detection provided
  5. Comply with IEEE 241 recommendations for fault currents and time intervals.
  6. Conductor Protection:  Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and conductor melting curves in IEEE 242.  Demonstrate that equipment withstands the maximum short circuit  current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse.  To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short circuit  current.
  7. Transformer Protection: Protect transformers against damage from through fault currents according to ANSI C57.109, IEEE C57.12.00, IEEE 242
  8. Low-Voltage Circuit Breakers: IEEE 1015 and IEEE C37.20.1
  9. Coordination Study Report:  Prepare a written report indicating the following results of coordination study:
    1. Computer generated Overcurrent Protective Devices report must include:
      1. Device tag
      2. Current transformer ratios; and tap, time-dial, and instantaneous-pickup values
      3. Circuit breaker sensor rating; and long-time, short-time, and instantaneous settings
      4. Fuse current rating and type
      5. Ground fault relay-pickup and time-delay settings
    2. Coordination Curves: Prepared to determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series, including power utility company's upstream devices.  Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation.  Show the following information:
      1. Device tag
      2. Voltage and current ratio for curves
      3. Three-phase and single-phase damage points for each transformer
      4. Melting and clearing curves for fuses
      5. Cable damage curves
      6. Transformer inrush points
      7. Maximum fault-current cutoff point
  10. Provide a computer generated data sheet report for setting of overcurrent protective devices
  11. Software shall utilize data revisions to track system data changes such as “As Found” and “Recommended” settings.
7.5 Arc Flash Study
  1. Perform Arc Flash analysis according to the IEEE 1584 guidelines and equations presented in NFPA 70E-2015, Annex D. Analysis shall be performed in conjunction with Short Circuit analysis and Protective Device Time-Current Coordination analysis.
  2. Incident Energy and Flash protection boundary shall be calculated at all location where energized work could be performed such as switchboards, switchgear, motor control centers, panel boards, busway and tie breakers.
  3. Working distances shall be based on IEEE 1584. The calculated arc flash protection boundary shall be determined using those working distances.
  4. Calculations must be performed to represent the maximum and minimum contributions of fault current magnitude for normal and emergency operating conditions.
  5. Multiple system configurations and operating conditions shall be considered and greatest incident energy must be selected for each equipment location.
    1. Provide a tabular view report of all configurations and operating conditions used
    2. Provide calculation methods and assumptions including any adjustments used when considering resistance and impedance tolerances.
  6. When applicable, Utility Minimum and Maximum contributions should be considered. Calculations shall also take into consideration the parallel operation of local generators with utility source as well as any stand-by generators.
  7. Include scenarios when the main source protective devices are or are not adequately isolated from the bus and may fail to operate or be capable of de-energizing the arc fault before it escalates into a line-side arc fault.
  8. Arc flash computation shall include both line and load side of main breaker calculations, where necessary.
  9. The Arc flash analysis shall include all MV, 575 volt, & 480 volt locations and significant locations in 240 volt and 208 volt systems fed from transformers equal to or greater than 125 kVA.
  10. Arc Flash Study Report:
    1. Arc Flash reports shall compare results from the various arc flash hazard assessments and be capable of filtering the “worst case” Arc Flash analysis results coming from different scenarios in a single table report.
    2. Provide a report in a tabulated format that displays the sequence of operation of protective devices during an arc fault.
    3. Recommendations for arc flash energy reduction including the use of arc reduction maintenance switches, current limiting fuses, replacement of overcurrent protective devices and/or trip units, or replacement of equipment with arc resistant or preventative designs.
  11. Software shall utilize data revisions to track system data changes such as “As Found” and “Recommended” settings.
  12. Arc Flash Warning Labels:
    1. Consultant shall provide a 3.5 in. x 5 in. thermal transfer type label of high adhesion polyester for each work location analyzed.
    2. All labels will be based on recommended overcurrent device settings and will be provided after the results of the analysis have been presented to the Company and after any system changes, upgrades or modifications have been incorporated in the system.
    3. The label shall include the following information, at a minimum:
      1. Location
      2. Nominal voltage
      3. Flash protection boundary
      4. Hazard risk category
      5. Incident energy
      6. Working distance
      7. Engineering study number, revision number and issue date
    4. Arc Flash warning label sample is shown below:
    5. etap arc flash label
    6. Labels shall be machine printed, with no field markings.
    7. Arc flash labels shall be provided in the following manner and all labels shall be based onrecommended overcurrent device settings.
      1. For each 600, 480 and applicable 208 volt panelboard, one arc flash label shall be provided
      2. For each motor control center, one arc flash label shall be provided
      3. For each low voltage switchboard, one arc flash label shall be provided
      4. For each switchgear, one flash label shall be provided.
      5. For medium voltage switches one arc flash label shall be provided
    8. Labels shall be installed by the engineering services division of the Company under the Startup and Acceptance Testing contract portion.
7.6 Training
  1. Project Training
    1. Training will be on-site and for duration of three (3) days for two (2) electrical engineers from Client’s staff. The training will include:
      1. Basic use of ETAP package as outlined in the software package tutorials and user’s guide manuals.
      2. Explanation of procedures that were used in developing the topology and the set-up of this project.
      3. Steps that would be involved in modifying and/or expanding system topology for the future revisions and/or upgrades of the equipment and the plant electrical distribution configuration.
      4. The use of the device library and the procedures in creating new devices or modifying existing devices.
  2. Arc Flash Training
    1. Consultant shall train the owner’s qualified electrical personnel of the potential arc flash hazards associated with working on energized equipment (minimum of 4 hours).
    2. The training shall be certified for continuing education units (CEUs) by the International Association for Continuing Education Training (IACET) or equivalent.