52 Item(s) found

Getting on Track with eTraX: New Efficiencies in Rail Power Systems Analysis & Optimization

Getting on Track with eTraX: New Efficiencies in Rail Power Systems Analysis & Optimization

In this webinar, we'll provide a comprehensive overview of ETAP eTraX, a powerful solution designed for the design, analysis, optimization and operation of both AC and DC rail traction systems.

Microgrid Controller (Off Grid) Explained

Microgrid Controller (Off Grid) Explained

Edge control solution for microgrids & distributed energy resources. Mission critical operations need a reliable power system that operates by supplementing the utility grid in parallel mode (tied) or autonomous island mode in a clean, optimized, low cost and resilient manner.

Microgrid Controller (Tied) Explained

Microgrid Controller (Tied) Explained

Edge control solution for microgrids & distributed energy resources. Mission critical operations need a reliable power system that operates by supplementing the utility grid in parallel mode (tied) or autonomous island mode in a clean, optimized, low cost and resilient manner. 

How to use Grid Code in ETAP 2024

How to use Grid Code in ETAP 2024

The variable nature of renewable energy introduces power quality concerns, including frequency and voltage control, that may negatively impact the reliable performance of a power system. Grid codes, interconnection, or evacuation criteria must be followed during the proposed system design and continue to maintain compliance under grid-connected operation.

Cómo realizar estudios de interconexión a la red para cumplir los requisitos del ETAP Grid Code™.

Cómo realizar estudios de interconexión a la red para cumplir los requisitos del ETAP Grid Code™.

Con la rápida transición del sector eléctrico mundial hacia la energía sostenible, la importancia de los estudios de interconexión del código de red se convierte en primordial. El análisis manual de los códigos de red puede llevar mucho tiempo, implicar escenarios intrincados y un cumplimiento estricto;ETAP Grid Code es una solución basada en modelos que incluye herramientas de software y hardware de control para garantizar el cumplimiento de los códigos o normas de red locales a lo largo del ciclo de vida del diseño y las operaciones del sistema eléctrico. Además, el exclusivo controlador de central eléctrica (ePPC) de ETAP, junto con su gemelo digital, garantiza una evaluación y un estudio precisos del rendimiento real del sistema para mejorar el cumplimiento y minimizar los riesgos.

The Red Sea Utility Grid is in the Tabuk province of Saudi Arabia. The site is a vast 33,000 km2 of islands, lagoon, coastal plain and mountains with extremely diverse marine life and terrestrial landforms. The grid is divided into four off-grid microgrids. The focus of this presentation is about three of the microgrids that are very similar in size and operation. Each of these microgrids includes two PV generation (total 6 MW), two battery storages (total 5MW, ~18 MWh), and two emergency backup diesel generators (~ total 3.8 MW). The system is designed to achieve high reliability by having redundancy at various levels.

Utilizing ETAP Power Plant Controllers & integrated SCADA for Multi-Area Renewable Energy Systems

Utilizing ETAP Power Plant Controllers & integrated SCADA for Multi-Area Renewable Energy Systems

Large power plants are designed and operated to maximize reliability. This is typically done by having multiple points of interconnection and networked configuration. In case of a failure or loss of one point of interconnection, the plant can be reconfigured by closing a coupling breaker and transferring power to another point of interconnection. However, to ensure optimal operation of the power plant, it is important to have a reliable control system that can handle such real-time changes in system configurations. Traditional PLC-based and non model-driven control systems struggle with such real-time changes of the configuration. ETAP Power Plant Controller (ePPC) is a model-driven solution that simplifies the control and management of multi-area power systems. ePPC can handle real-time changes in system configurations, enabling the controller to adjust quickly to any changes in the power network, ensuring optimal operation of the power plant. Additionally, ePPC uses a digital twin concept that allows for easy configuration and simulation of different system setups. The use of the digital twin concept means that any errors can be identified and resolved before implementation, ensuring efficient and effective setup of the power plant. Overall, ePPC offers a valuable solution for controlling multi-area renewable energy systems, providing real-time control with simple setup and reliable operation. 

Learn about ETAP Automated Fault Analysis Software

Learn about ETAP Automated Fault Analysis Software

ETAP Automated Fault Analysis System (AFAS) solution provides Real-Time and advanced analytics of electrical faults for your complex networks. Using the ETAP digital twin combined with disturbance records, engineers and operators have a clear forensic picture of any electrical fault in the network. Using proven ETAP analysis solvers, AFAS identifies faults, including fault type, start time, protection trip time, fault magnitudes, and fault distance/impedances. A novel signal injection features allow users to playback recorded data into the protection model to compare "as designed" vs. "as found" relay response. This comparison using ETAP electrical digital twin is used to validate system response per the configured protection scheme, and the sequence of operation was followed within expected time durations.

Learn how the ETAP FlickerMeter Calculator improves power quality

Learn how the ETAP FlickerMeter Calculator improves power quality

FlickerMeter is part of the Power Quality applications in ETAP. FlickerMeter allows importing CSV-formatted data files and analyzes up to 20 signals at each run, to evaluate flicker compliance against emission limits. Flicker calculations comply with IEC 61000-4-15 which is the standard for electromagnetic compatibility (EMC) and the calculation provides instantaneous, short-term (PST), and long-term (PLT) flicker indices based on a voltage waveform loaded into the calculator.

Unbalanced Network Harmonic Analysis: Power System Infrastructure Challenges & Active Filter Technology

Unbalanced Network Harmonic Analysis: Power System Infrastructure Challenges & Active Filter Technology

The integration of electric vehicles (EVs), PV systems, battery energy storage systems (BESS), and more has presented us with exciting opportunities and challenges. One such challenge is the need for unbalanced network harmonic analysis, especially when dealing with single-phase charging vehicles and inverter controls.