329 Item(s) found

Microgrid Controller (Off Grid) Explained

Microgrid Controller (Off Grid) Explained

Edge control solution for microgrids & distributed energy resources. Mission critical operations need a reliable power system that operates by supplementing the utility grid in parallel mode (tied) or autonomous island mode in a clean, optimized, low cost and resilient manner.

Microgrid Controller (Tied) Explained

Microgrid Controller (Tied) Explained

Edge control solution for microgrids & distributed energy resources. Mission critical operations need a reliable power system that operates by supplementing the utility grid in parallel mode (tied) or autonomous island mode in a clean, optimized, low cost and resilient manner. 

How to use Grid Code in ETAP 2024

How to use Grid Code in ETAP 2024

The variable nature of renewable energy introduces power quality concerns, including frequency and voltage control, that may negatively impact the reliable performance of a power system. Grid codes, interconnection, or evacuation criteria must be followed during the proposed system design and continue to maintain compliance under grid-connected operation.

Demystifying IBR Fault Response with Parametric Modeling & Analysis

Demystifying IBR Fault Response with Parametric Modeling & Analysis

The fault response characteristics of synchronous generators are inherently governed by their physical attributes and construction. In contrast, the fault response traits of Inverter-Based Resources (IBRs) are intricately tied to manufacturer-specific control schemes and settings. This intricacy adds complexity to accurately representing IBR behavior during fault conditions, particularly given the rapid advancements in inverter technology and the diverse control strategies employed by manufacturers.

Modeling and Verification of Benchmark Test Feeder Systems with DER in ETAP

Modeling and Verification of Benchmark Test Feeder Systems with DER in ETAP

Washington State University collaborates with IIT and ETAP on developing benchmark test feeder systems for the DOE UI-ASSIST project, showcasing ETAP's capabilities through the design and modeling of the IIT Rural Benchmark and modified IEEE 123-node systems, with validation conducted across MATLAB/SIMULINK and ETAP for various distribution studies.

Energy Efficiency Optimization for Offshore Oil & Gas Installations

Energy Efficiency Optimization for Offshore Oil & Gas Installations

Energy opportunity lies in leveraging emerging technologies like distributed energy resources analytics, blockchain, and AI to enhance energy efficiency, demonstrated by a 9% reduction in energy consumption and increased equipment life at Block 5 of Al Shaheen Oil Field through ETAP's power and demand management, network self-healing capabilities, and integration of new equipment and services.

Fuel Cell Modeling, Sizing and Standards in Micro-grid

Fuel Cell Modeling, Sizing and Standards in Micro-grid

Fuel cell and electrolyzer systems, employed from small-scale to grid-level applications, serve various grid support functions and energy optimization objectives, relying on intelligent energy management systems (EMS) and control strategies, yet face challenges due to the absence of standardized distributed energy resources sizing and lack of high-fidelity circuit model data, which will be addressed in the upcoming presentation, alongside discussions on cell-level fuel cell modeling in ETAP and its application in micro-grid optimization for net zero energy-emission adhering to relevant standards/grid-codes.

Optimization of Battery Energy Storage System Sizing for Hybrid System in PHU QUY Island

Optimization of Battery Energy Storage System Sizing for Hybrid System in PHU QUY Island

To meet increasing load demands on Phu Quy island, plans involve installing additional wind and solar power plants, yet due to renewable energy's dependence on weather conditions, the diesel power plant remains crucial, prompting a study on the optimal size of Battery Energy Storage Systems (BESS) to support renewable energy integration and optimize costs.

Predictive Analysis in Electric Distribution Systems with presence of Distributed Generation

Predictive Analysis in Electric Distribution Systems with presence of Distributed Generation

Incorporating Distributed Generation (DG) into distribution systems poses challenges due to the variability of renewable sources and fault occurrences, necessitating real-time monitoring and forecasting. Using ETAP-RT software, this study simulates a DG system's real-time behavior, including four events like grid contingencies and DG integration, offering insights for network planning and operation.

Assessment of Renewable Energy Integration in a 250 MW Peak Load Islanded Power System Using ETAP UDM Models

Assessment of Renewable Energy Integration in a 250 MW Peak Load Islanded Power System Using ETAP UDM Models

This comprehensive study, initiated in 2019 and spanning evaluations from 2020 to 2023, examines the evolving landscape of power generation, focusing on the transition from fuel-based dominance to anticipated renewable energy prominence by 2030, employing worst-case operational scenarios to assess system resilience and efficiency, supported by ETAP's robust multi-dimensional database structure and dynamic model integration, with upcoming insights into model behavior and tool utility aimed at enhancing understanding and preparation for future power generation challenges and opportunities.