統合されたACおよびDCの設計と分析
モデル駆動型SCADA、EMS、PMS、ADMS、SAS
統合デジタルツインプラットフォーム設計、運用、および自動化
Filter by
Didn't find what you are looking for? We're here to help!
73 Item(s) found
In Industrial applications, time is money. Quickly identifying faults and restoring assets is crucial to minimize downtime and costs. The ETAP AFAS (Advanced Fault Analysis Software) leverages disturbance records and telemetry data to locate faults and provide steps to restore assets while the fault is being addressed, increasing the chances of a quick resolution.
ETAP Automated Fault Analysis System (AFAS) solution provides Real-Time and advanced analytics of electrical faults for your complex networks. Using the ETAP digital twin combined with disturbance records, engineers and operators have a clear forensic picture of any electrical fault in the network. Using proven ETAP analysis solvers, AFAS identifies faults, including fault type, start time, protection trip time, fault magnitudes, and fault distance/impedances. A novel signal injection features allow users to playback recorded data into the protection model to compare "as designed" vs. "as found" relay response. This comparison using ETAP electrical digital twin is used to validate system response per the configured protection scheme, and the sequence of operation was followed within expected time durations.
FlickerMeter is part of the Power Quality applications in ETAP. FlickerMeter allows importing CSV-formatted data files and analyzes up to 20 signals at each run, to evaluate flicker compliance against emission limits. Flicker calculations comply with IEC 61000-4-15 which is the standard for electromagnetic compatibility (EMC) and the calculation provides instantaneous, short-term (PST), and long-term (PLT) flicker indices based on a voltage waveform loaded into the calculator.
The integration of electric vehicles (EVs), PV systems, battery energy storage systems (BESS), and more has presented us with exciting opportunities and challenges. One such challenge is the need for unbalanced network harmonic analysis, especially when dealing with single-phase charging vehicles and inverter controls.
Discover how this powerful simulation tool evaluates, verifies, and confirms the operation and selectivity of the ZSI scheme for different types of faults. The ZSI capabilities empower engineers and professionals like you to take control of electrical power system protection and analysis, enhance safety, minimize equipment damage, and validate arc flash mitigation techniques and scenarios.
Are you curious about the limitations of short-circuit standards and their inadequacy in addressing arc-flash incident energy calculations? In this presentation, we will review the challenges posed by these standards with an emphasis on IEC 60909-2016 and provide you with an explanation of ETAP arc-flash solutions to these limitations.
When it comes to running an arc flash hazard analysis study, it's crucial to identify equipment that may expose workers to high incident energy. One of the most hazardous areas is where line side arcing faults can occur. To address this challenge, Annex 0.2.3 of the 70E 2021 standard outlines various industry-accepted incident energy mitigation techniques. However, not all methods effectively tackle line side arcing faults. During the demonstration, you will acquire valuable knowledge on NFPA 70E endorsed mitigation techniques as well as details on ETAP modeling of the ArcBlok technology.
ETAP 2023 version 22.5 offers innovative solutions and features with numerous enhancements and time-saving improvements, empowering ETAP customers with technology and best practices to be safer, more reliable, efficient, compliant, and sustainable.
As more Distributed Energy Resources (DERs) are added and mixed into the grid, the need to effectively evaluate and validate the dynamic response of power systems has become essential for grid resiliency, reliability, and security. In this webinar, learn how ETAP's Transient Stability module addresses the needs and challenges of stability studies for power systems with DERs. The module provides comprehensive analysis of the system's behavior during disturbances, enabling engineers to make informed decisions for improving system stability and ensuring grid reliability.
This webinar discusses industry challenges and benefits of a model-based VVO, including practical applications for electric distribution systems. Gain valuable insights and benefits from ETAP customers enjoying a proactive reduction in energy waste, reduced CO2 emissions, consumption reduction, and extended equipment lifetime.
The ETAP iDLS solution leverages advanced technologies such as artificial intelligence and machine learning to provide accurate predictions of load demand and provide real-time operational insights to help grid operators make informed decisions. Additionally, iDLS integrates with existing grid infrastructure and control systems, making it easy to deploy and integrate into existing power systems. By providing a centralized load management solution, iDLS helps ensure grid stability and continuity of power supply, while minimizing the impact on connected customers and preventing blackouts and unplanned outages.
Learn how utility engineers use ETAP’s transmission & distribution system analysis and optimization solutions to optimize capacity planning and improve reliability and safety using schematic or geospatial views. ETAP Grid™ transmission system software integrates transmission network planning with detailed substation models, network topology processing, transmission system analysis, electric SCADA and real-time transmission network energy management system. For integrated distribution network analysis, system planning and operations solution it offers a progressive geospatial platform for simulating, analyzing, operating and optimizing the performance of Utility Smart Grids.
Discover ETAP ADMS™, a combined planning and operation solution to manage, control, visualize, and optimize electrical power distribution networks comprising of: Geospatial Information System (GIS) Electrical Supervisory Control & Data Acquisition (SCADA) Distribution Management System (DMS) Distribution Network Applications (DNA) Outage Management System (OMS) Advanced Distribution Management System must offer flexible solutions to address the core requirement of the new digital grid to provide resiliency and reliability to the network while having the scalability to intelligently and proactively assess the outcome of the operations and contribute to the new requirements to minimize network cost and improve asset optimization. ETAP ADMS offers such an intelligent and robust decision support platform based on a unified Digital Twin of the electrical network with a collection of Geospatial-based distribution network applications integrated with mission-critical operational solutions to manage reliably and securely, control, visualize, and optimize small to vast distribution networks and smart grids.
In this webinar, we demonstrated how easy it is to convert to ETAP 22 from various legacy software applications using the most advanced built-in data conversation tool. We also explored many of the new features & capabilities in ETAP 22 and revealed tips and tricks for the best ETAP experience.
ETAP Train Power Simulation - eTraX™ software includes validated, user-friendly and flexible software tools for designing, analyzing and managing AC and DC railway infrastructure. Learn how eTraX integrates with ETAP protection & coordination software (StarZ) to offer insights into line protection, protective relay performance & evaluation, troubleshooting false trips, and system-wide protective device operation.
ZSI (Zone Selective Interlock) Scheme has been developed about 40 years ago and since then, the application has expanded from Protection to Arc Flash Hazard Mitigation and even Coordination or Selectivity.
ETAP Star™ is an easy-to-use, interactive, and powerful platform for overcurrent protection and coordination studies. Supported with 100+ thousands of verified and validated protective device and equipment library models from manufacturers across the world, simulation and analysis of any network are at your fingertips. Learn about the intuitive and efficient approach for the creation of Time-Current Characteristic Curves and the program’s artificial intelligence (AI) for protection and coordination or selectivity analysis.
In this webinar, we introduce ETAP Unbalanced Network Short Circuit Analysis and demonstrate how to evaluate the impact of shunt, series, and sliding faults on balanced and unbalanced networks: *Device Duty Evaluation for multi-phase, single-phase, AC & DC systems * Run and evaluate all fault types in one study * Shunt, series, and simultaneous faults * Simulate protective device responses to fault currents and configuration changes Unbalanced Network Short Circuit Standards: * ANSI C37.10 for AC systems * IEC 60909 for AC systems * IEC 61660 for DC systems