Resource Center

Design & Operation of Power Systems with a Digital Twin Foundation

Design & Operation of Power Systems with a Digital Twin Foundation

37:30 Webinars

This webinar introduces an integrated model-driven approach for engineers and managers to design and operate power systems. ETAP’s Digital Twin Platform combines electrical, mechanical, and thermal properties with intelligent visualization for modeling, design, automation, and real-time predictive analysis. Learn how ETAP’s unique multi-dimensional database eliminates the need for hundreds of copies of the project file, by providing unlimited graphical presentations, configurations, data revisions, loadings, generations and operational values within the same project database. Moreover, ETAP unified platform allows simultaneous analysis of the network under various conditions.

Utilize ETAP GIS To Better Design, Analyze & Expand T&D Networks - ETAP Project Management Webinar Series Part 4

Utilize ETAP GIS To Better Design, Analyze & Expand T&D Networks - ETAP Project Management Webinar Series Part 4

30:53 Webinars

Learn how owners, operators, and planners utilize ETAP GIS to better design, analyze, and expand their networks. We will discuss how to include transmission, sub-transmission and distribution networks in the same electrical model and solve the combined networks.

ETAP iSLD - Intelligent Electrical Single-Line Diagram - ETAP Project Management Webinar Series Part 3

ETAP iSLD - Intelligent Electrical Single-Line Diagram - ETAP Project Management Webinar Series Part 3

36:49 Webinars

ETAP's intelligent electrical single line diagram (iSLD) is a multi-layered one-line view of the digital-twin, that includes advanced functionality and awareness of the device's characteristics and system behavior. It is an active blueprint and the foundation of your digital transformation journey.

ETAP NetPM - Explained in 5 minutes

ETAP NetPM - Explained in 5 minutes

7:24 Webinars

A 5 minute demo on  how to shorten the project duration for power system modeling and studies, from months to weeks, utilizing ETAP Network Project Management (NetPM™), a platform for collaborative engineering.

What is NetPM - A 5 minute guide to project efficiency with ETAP NetPM

What is NetPM - A 5 minute guide to project efficiency with ETAP NetPM

5:19 Webinars

A brief overview on how to shorten the project duration for power system modeling and studies from months to weeks, utilizing ETAP Network Project Management (NetPM™), a platform for collaborative engineering.

How To Shorten Project Delivery Time & Improve Design Efficiency - ETAP Project Management Webinar Series Part 2

How To Shorten Project Delivery Time & Improve Design Efficiency - ETAP Project Management Webinar Series Part 2

27:57 Webinars

Learn how to shorten the time for power system modeling and studies from months to weeks, utilizing ETAP Network Project Management (NetPM™), a platform for collaborative engineering.

ETAP 21 Release Highlights Part 1 - Design, Analysis & Simulation

ETAP 21 Release Highlights Part 1 - Design, Analysis & Simulation

33:55

ETAP 21.0 offers a new set of integrated power analysis modules, electrical dimensioning capabilities, automation, and operations solutions. In this webinar, we demonstrate new Design, Analysis & Simulation Solutions & Features, plus many of the enhancements and time-saving improvements.

Harmonic Mitigation Project in Steel Plant

Harmonic Mitigation Project in Steel Plant

This presentation aims to explain the necessary steps to comply with national grid code standards; an exemplary case of a steel manufacturing plant with intensive use of induction furnaces and a THD that exceeded the Grid Code's limits. This presentation highlights compliance, analysis, engineering (electrical power system studies), and equipment designed to comply with the technical criteria and mitigation. ETAP was used to size a filter to mitigate harmonics and improve the power factor for 34.5 kV transformers for grid code compliance. 

Efficient Design & Analysis with CoSimulation

Efficient Design & Analysis with CoSimulation

Co-simulation is the cooperative simulation of a system model through different software packages. Collaborative simulation, as such, spans more physics domains and offers more insight than single-domain engines alone. Therefore, the collective composition of its parts enables multi-domain, multi-physics simulation results.​ ETAP CoSim™ enables ETAP simulation engines to collaborate and interact. For example, the ETAP Time Domain Power Flow can co-simulate with ETAP Harmonic Analysis to assess harmonics distortion over time. ETAP CoSim platform also enables ETAP and 3rd party tools to co-simulate and solve large, complex, and multi-disciplinary system models—collectively via an efficient API surface. The ability to co-simulate with third-party software extends existing software capabilities into the multi-physics domain and greater situational awareness. This solution presentation will introduce the concepts of co-simulation and the flexible ETAP CoSim platform. The presentation will also highlight commercial use-cases of Phasor and Electromagnetic co-simulation using emtCoSim™ and Controller Hardware-in-the-Loop (CHIL).

Integrated Stability & Protection Sequence of Operation

Integrated Stability & Protection Sequence of Operation

Many protection functions such as over/under frequency, out-of-step, generator loss of excitation are set based on power system dynamic characteristics. These protection functions were conventionally set with the assumption that, system dynamics are predictable using simplistic and aggregated models. Higher penetration of distributed energy resources (DERs) has made power system dynamics considerably more complex to predict through conventional approaches. ETAP offers a new solution to perform unified protection and transient stability study to accurately capture interactions between system dynamics and protection system. This solution allows protection engineers and network planners to 1- tune protection settings to act properly during system dynamics, 2- design and test remedial protection schemes, 3- evaluate all protection functions such as out-of-step, overcurrent and generator loss of excitation protection function and 4- perform grid code studies that require evaluating DER performance along with its protection system.

GIS Modeling & DNA

GIS Modeling & DNA

The traditional power system model and desktop-based analysis work well for greenfield projects. It becomes incredibly challenging to make use of the modeling in a brownfield project. The network routes are limited by existing infrastructure and road layouts. A new design for a built-up urban area is possible by multiple iterations of cable lengths, optimal routes, placement of electrical assets, etc. The iterative process becomes more manageable by having a georeferenced map of all interest areas with high accuracy. GIS-based software becomes extremely helpful to undertake a brownfield design. However, the challenge remains in extracting the GIS data into a power system software in executing the electrical analysis. ETAP is breaking ground in this avenue. EnergyTron is closely working to implement this on a large scale, potentially the largest in the world for this type of project analysis. Read more

Remedial Action Scheme for Integrated G-T-D System

Remedial Action Scheme for Integrated G-T-D System

Due to system shutdowns stemming from drastic frequency decline associated with the loss of relatively large generating units, Fortis TCI embarked on exploring opportunities to curtail these events to improve system response. This was achieved through detailed modeling and validation of system parameters with event data gathered from previous events.  Carefully implemented Remedial Action Schemes are currently explored to provide cost-saving benefits; significantly improving frequency response, without the need for larger spinning reserves and minimize investment costs for BESS.

Enterprise Asset Management & Automated Fault Analysis

Enterprise Asset Management & Automated Fault Analysis

Solution introduction & case study presentation.
Remote Management of Protection Relays  - Improved Productivity & Compliance Benefits
This presentation aims to define and demonstrate the importance of the remote management of protection relays in large power system networks. A protection system is vital for network security and reliability. A centralized system should aim to get each protection relay setting, records, logic, and status quickly and efficiently so that all these data can be analyzed, managed, and utilized.
In OETC grid stations, there are more than 4000 protection relays installed.  OETC network is rapidly expanding every year. There are incidences of tripping due to various reasons. These isolated equipment restorations can be done faster if protection relays fault records, events retrieved through remote access. ETAP and OETC are jointly working on conceptualizing and implementing a fully functional system for remote relay access and data retrieval – eProtect.
This presentation discusses the technical requirements, networking solutions, cybersecurity requirements, features, testing, validating system requirements, and detailed benefits. Challenges faced during implementation will be discussed together with their resolution.

Enhanced End-to-End Real-Time SILHIL Workflows with ETAP and ePHASORSIM

Enhanced End-to-End Real-Time SILHIL Workflows with ETAP and ePHASORSIM

The ETAP/ePHASORSIM hybrid power system solution is ideally suited for installing and certifying any new device on the grid for protection, monitoring and control, thus reducing risk and costly commissioning time—as well as validation of reliability and security of any transmission, distribution and generation grid before implementation. Users can simulate SIL and HIL scenarios in real time, greatly reducing time-to-market. We will demonstrate the time-savings and value of this solution by exporting an ETAP model to ePHASORsim and controlling it in closed-loop with ETAP’s controller hardware.  To fine-tune the response, we will change the ETAP model, export again, the re-start the simulation—a cycle commonly observed in testing environments. 

Microgrid Design & Analysis

Microgrid Design & Analysis

Microgrid Analysis & Design is an essential step for Microgrid Implementation. Upfront design and analysis of the target microgrid system, whether for brownfield or green-field Microgrid implementation, can help drive both technical and financial benefits, including determining optimized generation assets required to meet the microgrid objectives as well as a projection of return on investments. Analysis & design from safety, reliability, and financial perspective are critical for successful microgrid implementation to minimize the impact and rework during the installation phase. This presentation will provide recommendations on best practices for Microgrid Analysis & Design.

etapAPP - Effectively Collect & Synchronize Field Data - ETAP Project Management Webinar Series Part 1

etapAPP - Effectively Collect & Synchronize Field Data - ETAP Project Management Webinar Series Part 1

40:48 Webinars

The etapAPP is a  tablet application to streamline field data collection as well as model, verify, and visualize electrical systems using logical and geospatial asset location and connectivity. 

Unit Capability Validation, an Analytical Approach for MOD-25 Compliance

Unit Capability Validation, an Analytical Approach for MOD-25 Compliance

It is crucial to define the reactive power limits to evaluate the voltage support available under normal, abnormal and emergency operations with the unit's safe functioning. Published generator thermal capabilities curves, produced by the manufacturer, define the limits for safe operation based on the generator design's thermal limitations. Practically, the available reactive capability differs from the published equipment curves due to plant specific design and operating constraints. This presentation discusses a theoretical approach utilizing a simplified electrical distribution system and an ETAP model to identify and validate the plant-specific unit capability. 

Planning, Design, and Validation of a Microgrid using ETAP Digital Twin Platform

Planning, Design, and Validation of a Microgrid using ETAP Digital Twin Platform

The implementation of a Microgrid involve several stages, in which the engineer has to deal with the interaction of different processes and dynamics, taking into account the different modes, topologies and scenarios that the system could possibly have. This is the case of an ongoing project for an important Grid operator in Colombia, in which PTI S.A and OTI are working together to deliver a comprehensive Monitoring and Control system for an entire Microgrid, comprised of different energy resources as Diesel, Solar, Batteries and a connection to the Public Grid. Project stages involve Planning, Design, Validation, In site Deployment and Testings, and for that purposes, Etap PS/RT and Opal RT solutions will be used, on a Digital Twin Platform environment.

Arc Flash Auto-Evaluation

Arc Flash Auto-Evaluation

01:02:16 Webinars

ETAP Arc Flash Auto-Evaluation allows you to quickly evaluate arc flash incident energy with automated protective device coordination study to significantly reduce costly modifications and mitigation equipment. The webinar demonstrates the automatic evaluation of C-area plots and equipment damage points.

ETAP ArcSafety – AC Arc Flash Calculator based on Australian Standard ENA NENS 09-2014

ETAP ArcSafety – AC Arc Flash Calculator based on Australian Standard ENA NENS 09-2014

02:50 Webinars

Reduce risk, improve safety & enforce compliance based on ENA NENS 09-2014.

20 of 202 results