
Arc Flash Analysis Done Right

Part 1 – System Modeling & Studies for Existing Systems

Operation Technology, Inc. Copyright 2009

- Result of rapid release of energy due to an arcing fault between two conductors.
- Bus voltages > 208V
- Temperatures as high as 36,000 °F

- Intense Heat
- Thermo-acoustic shock wave
- Molten metal
- Shrapnel
- Blinding light
- Toxic smoke
- Contact with energized components

- Arc Flash prevention is at the forefront:
 - Greater understanding of arc flash hazards and the risks they pose to personnel
 - Increased enforcement on the part of OSHA to judge whether the employer "acted reasonably" in protecting its workers from arc flash hazards

- IEEE 1584-2002
- IEEE 1584a-2004
- IEEE 1584b-2009(?) In Ballot
- IEEE 1584.1 In Progress
- IEEE 3002.5 In Progress
- NFPA 70E-2009

- OSHA regulations were developed to mandate that employers provide a safe workplace for their employees
- CFR Part 1910 promotes the safety of employees working on or near electrical equipment and clearly defines employer responsibilities

Employer Responsibilities

- Equipment must be de-energized before work is performed unless demonstrated:
 - De-energizing introduces additional or increased hazards
 - Infeasible due to equipment design or operational limits
- Lockout / Tag out (LOTO) procedures must be used

Employer Responsibilities

- If equipment cannot be de-energized prior to work:
 - Employees must be properly protected
 - Employers are responsible for performing a hazard assessment

Conveying the Hazard

- Arc Flash information needs to be determined and documented
- Protection boundaries established and appropriate PPE must be provided
- Panels and electrical equipment must be labeled:
 - Labels are the end product but a number of prerequisite steps must be followed
 - Arc flash calculations is one of the steps of the entire arc flash assessment

Qualifications of Study Engineer

- Arc flash calculations should be performed by or under the direction of a qualified person with experience in performing power system studies including arc flash calculations
 Have familiarity with the industry for which
- Have familiarity with the industry for which the study is being performed

Calculation Methodology

- Utilize IEEE 1584 Guide for Performing Arc Flash Calculations
- NFPA 70E table approach is not needed.
- Avoid using quick calculators except for approximate calculations
- 3-Phase equations can be used for 1-Phase system with conservative results.
- Empirical equations can be used where IEEE equations do not apply. (>15 kV or < 208 V)

Arc Flash Study Prerequisites

- Scope of study
- Field verification and audit
- Update one-line diagrams
- Software modeling and design
- Short-circuit analysis
- Protective device coordination

Scope of Arc Flash Study

- Scope and level of detail depend upon complexity of the system:
 - Simple System Begin at point of electrical service. e.g. office buildings, commercial facilities, small industrial and institutional systems
 - Intermediate System Customer owned service transformer and/or secondary selective substation. e.g. mid sized industrial, institutional and large commercial facilities

Scope of Arc Flash Hazard Study

- Scope and level of detail depend upon complexity of the system:
 - Complex System System includes nominal voltage > 600 V, protective relaying, network systems, customer owned primary substation, customer owned generation for prime power.
 e.g. large industrial complexes, campus type systems with multiple modes of operations

Scope of Arc Flash Hazard Study

Encompass all equipment from customer owned service entrance down through major equipment rated 208V nominal
 Equipment rated < 240 V served by transformer rated <= 125 kVA may be excluded

			quipment		
Voltage <=	20	08	Xfmr <=	125	kVA
Cat 0	1	lbf <=	- 5	kA	
Cat 1	1	lbf <=	= 10	kA	

Field Verification and Audit

- Most critical step for all system studies
- Become familiar with plant layout, equipment and maintenance procedures
- Walk-downs to validate drawings and access equipment condition
 - Start with most recent / accurate one-line diagram. Highlight or mark-off each piece of equipment on the one-line:
 - Connectivity
 - Cable/Line lengths
 - Nameplate ratings
 - Protective device locations and settings
 - Work with electricians to gather and document data

Take pictures during field verification

Copyright 2009 Operation Technology, Inc.

- Generate / update worksheets with protective device information & settings.
- What is missing in this settings sheet?

50/51	CO	SUB 8	TIME O.C.	TAP:6 T.D.:9 INST 180 A.	ABB	1200/5
50/51	СО	SUB 8	TIME O.C.	TAP:6 T.D.:9 INST: 180 A.	ABB	1200/5
50/51	CO	SUB 8	TIME O.C.	TAP:6 T.D.:9 INST: 180 A.	ABB	1200/5

Curve Type

Field Verification and Audit

- Validate main feeder lengths
- Issue mark-ups to update CAD drawings as needed
- Wear PPE based on NFPA tables when collecting data for equipment with no labels
- At higher voltages rely on HV qualified electricians to collect data
- Equipment ID's in the electrical model must match the system device ID / tag number

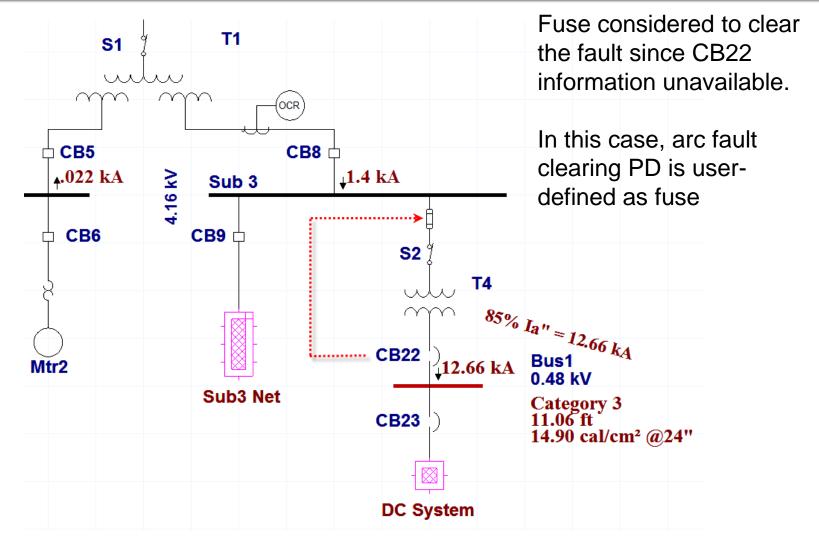
Summary of Field Verification

Equipment	Count (From Client)	Count (After Field Verification)
Bus	337	339
Cable	608	1292
HVCB	76	84
LVCB	451	1205
Contactor	485	1169
Fuse	219	220
Induction Motor	461	1143
OCR	466	474
СТ	413	424

- Above example shows missing equipment added to existing model after field verification such as LV motors > 50 HP and load equipment feeders
- Data collection must have high precision for arc flash studies for higher accuracy
- Other studies like short circuit may not need high precision data collection since they tend to be on the conservative side

Data Collection

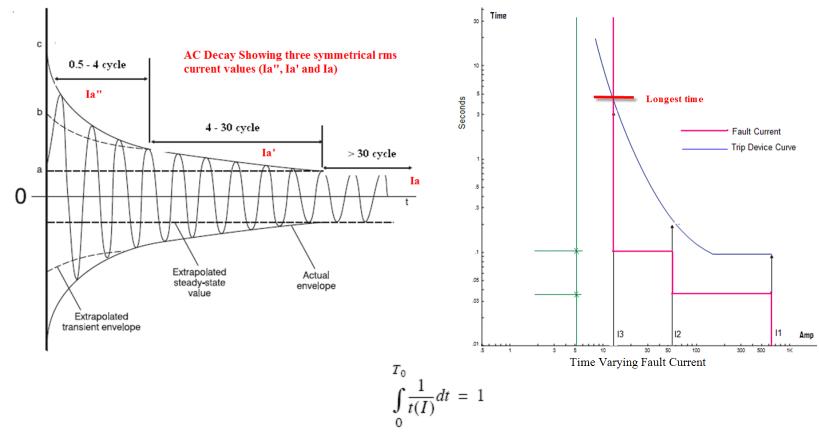
- Utility Normal, Max and Min SC Rating
 - Contact utility for most recent values
 - Max and Min SC rating for Coordination
- Working Distances
 - IEEE 1584 Table 3, however alternate working distances to be used as applicable.
- Equipment Type and Condition
 - MCC, Switchgear, etc. (Isolated / Not Isolated)
 - Evaluate age, condition and maintenance history
 - Poorly maintained equipment may not operate


Sample Data Collection Sheet

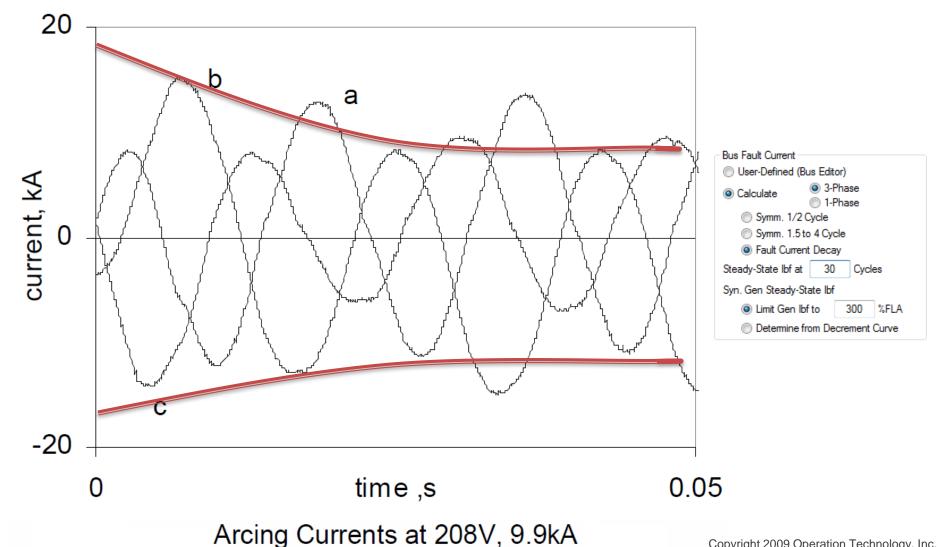
BREAKER IDENTIFICATION	BREAKER TYPE	FRAME SIZE	TRIP UNIT	TRIP UNIT#	PLUG #	In	SENSOR RATING	LTPU	LONG DELAY	STPU	SHORT DELAY	INST.	NOTES & REMARKS	LAST CAL
MAIN 480V SWGR	CH DSII- 632	3200	DIGITRIP RMS 510		3000A	3200A	3200A	1.0	2.0	2.0	0.3	DIS		10/12/2006

- When relay, circuit breaker and fuse data not available – no assumption should be made to their type, style, setting or clearing time.
- Arc Flash analysis should not be performed on downstream devices with assumed data.
- If you must provide result, select the further upstream device that has known data and calculate results based on that device.

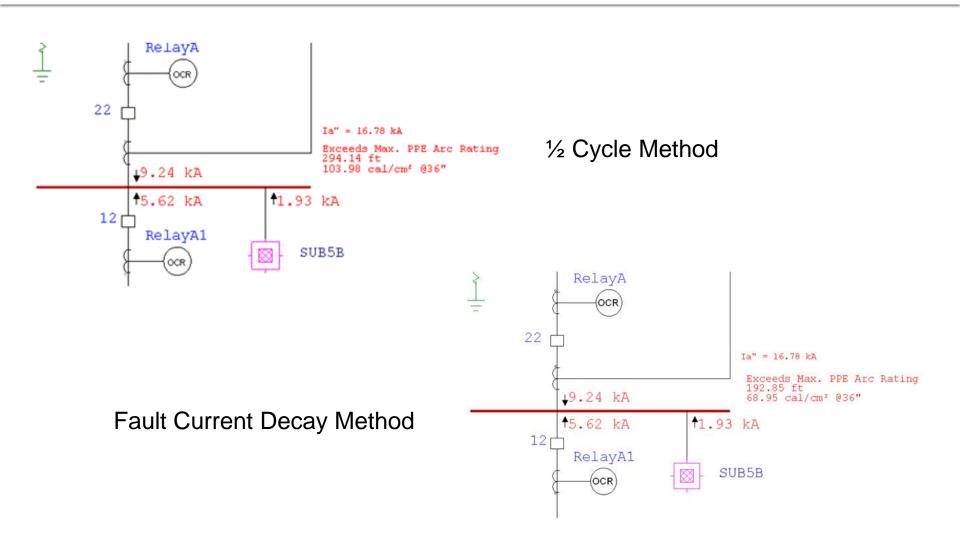
Copyright 2009 Operation Technology, Inc.



- Short circuit model provides accurate representation of system Z.
- Arc flash study should be based on up-todate short circuit study that reflects existing conditions, system configurations and operating scenarios.
- Maximum fault levels calculated.
- Identify device duty problems prior to proceeding with arc flash calculations.


- System representation should include accurate momentary, interrupting and steady state fault currents.
 - Neglecting steady state currents may give inaccurate picture of how devices will operate. This becomes an important factor for systems with generation.
 - Incident energy decay is directly proportional to decay in short circuit current.

Fault Current Decay


IEEE Std C37.112-1196 equation (3)

Fault Current Recording

Copyright 2009 Operation Technology, Inc.

Fault Current Decay-MV System

Protective Device Coordination

- Existing device ratings and settings must be field verified
- Identify any mis-coordination based on bolted fault
- Include protection schemes utilized in the system such as differential and directional relays
- Plot arcing current to compare against device ST and INST settings
 - LV Arcing Fault ~ 38% of Bolted Fault
 - MV Arcing Fault ~ 90% of Bolted Fault

Protective Device Coordination

- Ensure that downstream device (breakers / fuses) clear the short circuit fault.
- For selective coordination, sufficient time separation between devices must be maintained.
- Consider relay calibration state and age when determining operating time.

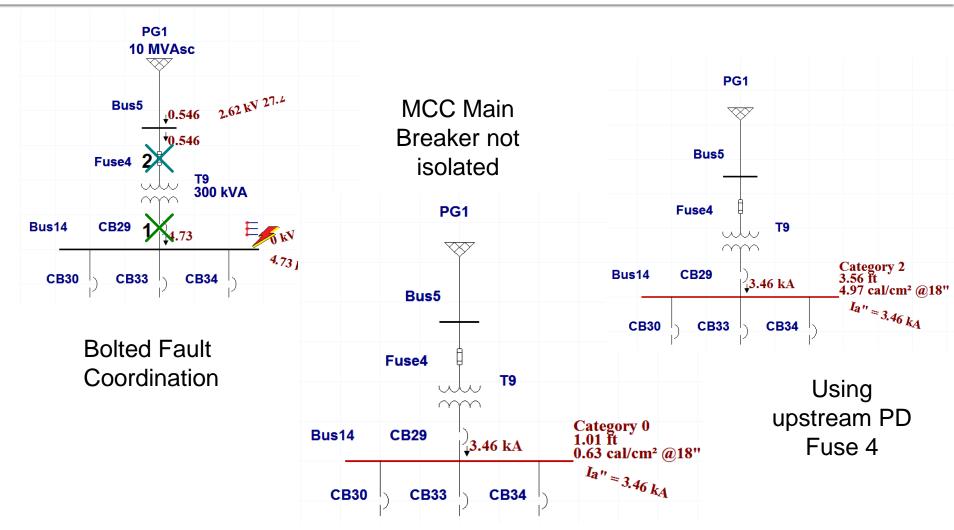
 Latest relay test reports
 Advanced Relay Test & Transient Simulator <u>Click here for more details</u>

Copyright 2009 Operation Technology, Inc.

Amps 1. 100 @ 34.5 ml

Arc Flash Study Options

- Prefault Voltage = System Nominal kV
- Faulted buses include SWGR, MCC, Panelboards, etc.
- Consider decaying and non-decaying fault currents
- Include motor equipment cables and overload heaters



- Consider various utility MVAsc
- Consider combinations of secondary selective tie breaker open / close
- Consider combinations of sources in and out of service
- Determine Arc Thermal Performance Value (ATPV) / EB_T rating for equipment (cal/cm²)

- Panelboard / MCC / Switchboard
 - Typically main source PD may not be isolated
 - Evaluation of equipment must be made
 - More conservative results may be needed i.e. use next upstream protective device to determine results

- IEEE 1584 tests showed one case of sustained arc at 208 V (> 10 kA with 12.7 mm gap) in enclosure without barrier.
 - Phase conductors with open tips
 - Real-world equipment has insulating barriers
- Effect of Insulating Barriers in Arc Flash Testing (Sept 2008)
 - Self sustaining arcs possible at 208V with 12.7 mm gap with 4.5 kA

Compare all cases to determine worst case arc flash incident energy
Utilize ETAP arc flash result analyzer to determine worst case. Arc Flash Analyzer

🖲 Output Report 🛛 🔘 Scenarios —	ID	kV	AF-Decay	AF-HalfCycle	ANSI-Duty			
Ref. Select Reports	Bus1	0.48	5.7	5.7	5.7			
	Bus2	0.48	1.6	1.6	1.6			
AF-HalfCycle	Bus14				5			
ANSI-Duty	Bus23A	0.48						
	LVBus	0.48	171.8	209.1	189.1			
	Main Bus	34.5	8004.5	1395.7	1384.1			
	MCC1	0.48	1.5	1.5	1.4			
	Sub2A	13.8	4.2	4.3	4.2			
	Sub2B	13.8						
roject Report	Sub 3	4.16	13.7	13.9	13.7			
	Sub3 Swgr	4.16	6.4	6.5	6.4			
) All Project in Active Directory	Sub22	3.45	5.6	6.2	5.5			
) Active Project	Sub23	3.45						
Example-ANSI								
Bus								
Protective Device								
Protective Device								
] Load Terminals								
] Load Terminals nfo								
Load Terminals nfo								
Load Terminals nfo 7 kV 7 ype								
Load Terminals nfo 7 kV Type Connected Bus		< III						
Load Terminals ifo 7 kV 7 Type								
Load Terminals fo kV Type Connected Bus Bus Gap (mm)	Copy 🗈 Sort 🎘 🕹 🛣				– Display Optic	ons	Reporting	
Load Terminals fo KV Type Connected Bus Bus Gap (mm) X Factor Grounding]	er Reports By Haza	rd Category	Display Optic		Reporting	
Load Terminals fo kV Type Connected Bus Bus Gap (mm) X Factor Grounding esults	Copy 🗈 Sort 👤 🛣	.]		rd Category	Actual Val	ue	• =	Custo
Load Terminals fo KV Type Connected Bus Bus Gap (mm) X Factor Grounding esults Total Energy (cal/cm²)	Copy 🗈 Sort 🛃	.]	PA 70E 2009	-	Actual Val Difference	ue is with Ref.	Standard Label	Lab
Load Terminals fo KV Type Connected Bus Bus Gap (mm) X Factor Grounding esults Total Energy (cal/cm²)	Copy 🗈 Sort 😥 🛣	.]	PA 70E 2009	rd Category Cal/cm²	Actual Val Difference	ue	Standard	Lab
Load Terminals fo kV Type Connected Bus Bus Gap (mm) X Factor Grounding esults Total Energy (cal/cm²) Energy 1 (cal/cm²) Energy 2 (cal/cm²)	Copy 🗈 Sort 👤 🛣	Filt NF	PA 70E 2009	▼ cal/cm²	Actual Val Difference Sk	ue is with Ref.	Standard Label	Lab
Load Terminals fo kV Type Connected Bus Bus Gap (mm) X Factor Grounding Total Energy (cal/cm²) Energy 1 (cal/cm²) Energy 2 (cal/cm²) Energy 3 (cal/cm²)	Copy 🗈 Sort 😥 🛣		PA 70E 2009	cal/cm²	 Actual Val Difference Sk 	ue is with Ref.	Standard Label	Custo Labo
Load Terminals fo kV Type Connected Bus Bus Gap (mm) X Factor Grounding Total Energy (cal/cm²) Energy 1 (cal/cm²) Energy 2 (cal/cm²) Energy 3 (cal/cm²) PPE Description	Copy 🗈 Sort <section-header> 🕹 K</section-header>		PA 70E 2009	v cal/cm² 1.2 4 3	Actual Val Difference Sk	ue :s with Ref. .ip If Same	Standard Label	Custo Labo
Load Terminals fo kV Type Connected Bus Bus Gap (mm) X Factor Grounding Total Energy (cal/cm²) Energy 1 (cal/cm²) Energy 2 (cal/cm²) Energy 3 (cal/cm²)	Copy 🗈 Sort 24 X Filter Results By Incident Energy FCT Not Determined		PA 70E 2009	cal/cm²	Actual Val Difference Sk	ue is with Ref.	Standard Label	Custo Labo Data SI

Copyright 2009 Operation Technology, Inc.

Arc Flash Analyzer

🖲 Output Report 🛛 🔿 Scenarios ————————————————————————————————————	ID	kV	Output Rpt.	Configuration	Total Energy	FPB (ft)	Hazard Category	Final FCT	Source PD ID	% la Variation
ef. Select Reports	Bus1	0.48	AF-HalfCycle	Normal	5.7	5.7	Cat 2	10.5	CB22	
AF-Decay	Bus2	0.48	AF-HalfCycle	Normal	1.6	1.8	Cat 1	3.6	CB31	
AF-HalfCycle	Bus14	0.48	ANSI-Duty	Normal	5	3.6	Cat 2	28.3	Fuse4	
ANSI-Duty	LVBus	0.48	AF-HalfCycle	Normal	209.1	34.8	> Cat 4	342.1	CB8	15%
	Main Bus	34.5	AF-Decay	Normal	8004.5	245.5	> Cat 4	1087.3	CB10	
	MCC1	0.48	AF-HalfCycle	Normal	1.5	1.7	Cat 1	3	Fuse3	15%
	Sub2A	13.8	AF-HalfCycle	Normal	4.3	5.6	Cat 2	13.1	CB11	
	Sub 3	4.16	AF-HalfCycle	Normal	13.9	18.6	Cat 3	13.9	CB8	
	Sub3 Swgr	4.16	AF-HalfCycle	Normal	6.5	17.1	Cat 2	13.9	CB8	
pject Report	Sub22	3.45	AF-HalfCycle	Normal	6.2	16.1	Cat 2	30.7	CB12	
Protective Device Load Terminals o kV Type Connected Bus										
Connected Bus Bus Gap (mm) X Factor	Copy 🖻 Sott 👔		III							
Protective Device Load Terminals fo kV Type Connected Bus Bus Gap (mm)	Copy 🖻 Sott 🖭	Z↓		10.1	Display Opti		Reporting			
Protective Device Load Terminals o kV Type Connected Bus Bus Gap (mm) X Factor Grounding	Copy 🗈 Sort 24	X↓	ter Reports By Hazarı	d Category	Actual Va	alue	Reporting	Standard	Custom	
Protective Device Load Terminals o kV Type Connected Bus Bus Gap (mm) X Factor Grounding		Max Fil		d Category		alue	Reporting	Label	Label	
Protective Device Load Terminals o KV Type Connected Bus Bus Gap (mm) XF factor Grounding sults Total Energy (cal/crr²)	Filter Results By	X↓	ter Reports By Hazar FPA 70E 2009		Actual Va	alue	Reporting	Label	Label	
Protective Device Load Terminals fo kV Type Connected Bus Bus Gap (mm) X Factor Grounding sults Total Energy (cal/cm²)	Filter Results By	Max N Min	ter Reports By Hazar FPA 70E 2009 c	▼ al/cm²	Actual Va	lue es with Ref.	Reporting			
Protective Device Load Terminals fo kV Type Connected Bus Bus Gap (mm) X Factor Grounding esults Total Energy (cal/cm²)	Filter Results By	Max Fill N Min	ter Reports By Hazar FPA 70E 2009 C Cat 0 1.	▼ al/cm²	Actual Va Difference Si	lue es with Ref.	Reporting	Label	Label	
Protective Device Load Terminals io kV Type Connected Bus Bus Gap (mm) X Factor Grounding sults Total Energy (cal/cm²) Energy 1 (cal/cm²) Energy 2 (cal/cm²) PPE Description	Filter Results By	Max Min	ter Reports By Hazar FPA 70E 2009 2 Cat 0 1. 2 Cat 1 4	▼ al/cm²	Actual Va Difference S	lue es with Ref.	Reporting	Label	Label	
Protective Device Load Terminals o kV Type Connected Bus Bus Gap (mm) XF factor Grounding sults Total Energy (cal/cm²) Energy 1 (cal/cm²) Energy 2 (cal/cm²) Energy 3 (cal/cm²) PPE Description	Filter Results By Filter Results By Filter Results By FICT Not Determined % Ia Variation	Max Min	ter Reports By Hazarr FPA 70E 2009 C Cat 0 1 Cat 1 4 Cat 2 8	al/cm²	Actual Va Difference Si	lue es with Ref.	Reporting	Label	Label	
Protective Device Load Terminals o kV Type Connected Bus Bus Gap (mm) X Factor Grounding sults Total Energy (cal/cm²) Energy 1 (cal/cm²) Energy 2 (cal/cm²) Energy 3 (cal/cm²)	Filter Results By	Max Min D	ter Reports By Hazar FPA 70E 2009 2 Cat 0 1. 2 Cat 1 4	al/cm²	Actual Va Difference S	llue es with Ref. kip If Same	Reporting	Label	Label	

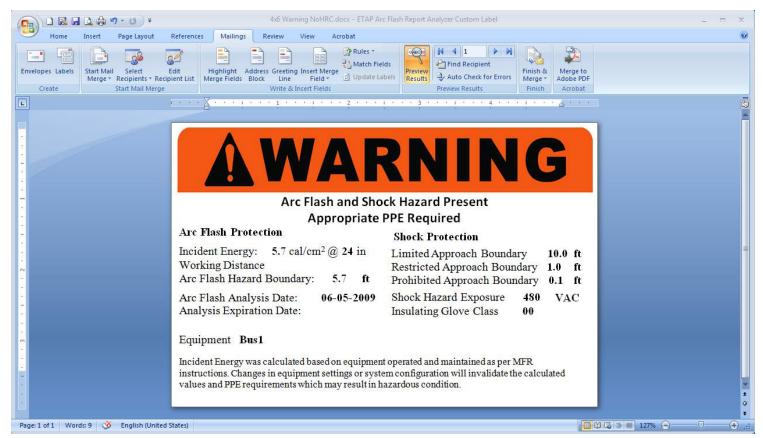
Arc Flash Analysis Report

- Executive Summary
- Scope and summary of major findings
- Findings and recommendations
 - Short circuit analysis
 - Coordination study
 - Arc flash study
- Tabulate results listing equipment arc flash energy
 - Bolted fault current, arcing fault current, identify tripping device and clearing time, working distance, arc flash protection boundary, incident energy, hazard/risk category
 - Arc flash labels

Arc Flash Mitigation

- De-energize whenever possible
 Reduce total amp-cycles of the arcing fault (l²t)
 - Overcurrent device setting changes
 - Fuse size/type changes
 - Addition of new overcurrent protection for better selectivity
 - Maintenance mode switch
 - Zone selective interlocking
 - Retrofitting breakers with new trip units
 - Arc flash light detecting circuit breakers / relays (fiber optics)

Arc Flash Mitigation Keep Distance!


- Increase working distance
 - Hot sticks
 - Robotic racking systems
 - Remote racking systems
- Reduce arc flash exposure
 - Arc resistant gear
 - Infrared (IR) windows
 - Insulated buses
 - Partial discharge systems

Copyright 2009 Operation Technology, Inc.

Arc Flash Enhancements ETAP 7.1

Custom arc flash label

Next Southern California User Group Meeting March 23, 2010

Part 2 Arc Flash Mitigation & Safety Program

Copyright 2009 Operation Technology, Inc.