

ETAP Unbalanced Load Flow

The ETAP V&V process for the Unbalanced Load Flow program has over 550 test case scenarios that are run before each ETAP release. The following cases are excerpts from the Unbalanced Load Flow V&V documentation.

Unbalanced Load Flow Comparison Case #1

<u>Comparison of ETAP Unbalanced Load Flow Results against a</u> <u>Published IEEE 13-Bus Feeder System</u>

Excerpts from Validation Cases and Comparison Results (TCS-ULF-002)

Highlights

- Comparison of ETAP Unbalanced Load Flow (ULF) results against those published in Radial Test Feeders IEEE Distribution System Analysis Subcommittee for an IEEE 13-bus feeder system found on https://cmte.ieee.org/pes-testfeeders/resources/.
- Comparison of bus voltages and angles on each phase.
- Comparison of current flows and angles on each phase.
- The difference in the results is less than 0.5% for all bus voltages and power flows.

System Description

To model the unbalanced distribution thirteen-bus system found in the web site above, an equivalent system (as shown in Figure 1) was designed in ETAP with the following conditions:

1. This case covers only the portion below Node 632 due to the same ETAP transformer tap for three phases.

- 2. The portion above Node 632 is modeled using the internal impedances of the utility.
- 3. Cables are modeled using impedances.
- 4. The distributed load is modeled using two lumped loads at both line terminals.
- 5. The single-phase load of constant current is modeled using an approximate lumped load.

This document and the information within it are confidential and proprietary to ETAP/Operation Technology, Inc. and may not be modified, copied, published, disclosed, distributed, displayed or exhibited in either electronic or printed formats without the written authorization of ETAP/Operation Technology, Inc., 17 Goodyear, Irvine, CA 92618, USA. © 1986-2023 ETAP/Operation Technology, Inc. All Rights Reserved.

OPERATION TECHNOLOGY, INC. – ETAP Group of Companies

Comparison of Results

The following tables of comparison show the differences between ETAP results and those published on the IEEE 13-bus feeder. Please note that the percent difference for all branch flows and bus voltages is less than 0.5%. Any missing fields in the tables below were not provided in the IEEE benchmark results; however, the corresponding ETAP results have been included.

	Voltage in %								
		Phase A		Phase B			Phase C		
Bus	IEEE	ETAP	%	IEEE	ETAP	%	IEEE	ЕТАР	%
			Diff			Diff			Diff
632	102.10	102.11	0.01	104.20	104.20	0.00	101.74	101.71	-0.03
633	101.80	101.80	0.00	104.01	104.01	0.00	101.48	101.44	-0.04
634(XF13)	99.40	99.41	0.01	102.18	102.18	0.00	99.60	99.56	-0.04
645	-	-	-	103.29	103.28	-0.01	101.55	101.51	-0.04
646	-	-	-	103.11	103.11	0.00	101.34	101.30	-0.04
671	99.00	99.01	0.01	105.29	105.30	0.01	97.78	97.73	-0.05
680	99.00	99.01	0.01	105.29	105.30	0.01	97.78	97.73	-0.05
684	98.81	98.81	0.00	-	-	-	97.58	97.53	-0.05
611	-	-	-	-	-	-	97.38	97.41	0.03
652	98.25	98.33	0.08	-	-	-	-	-	-
692	99.00	99.01	0.01	105.29	105.30	0.01	97.77	97.73	-0.04
675	98.35	98.35	0.00	104.20	104.20	0.00	97.58	97.54	-0.04

Table 1: Bus Voltage Magnitude Comparison

	Phase angle in Degrees								
		Phase A		Phase B			Phase C		
Bus	IEEE	ETAP	% Diff	IEEE	ETAP	% Diff	IEEE	ETAP	% Diff
632	-2.49	-2.49	0.00	-121.72	-121.72	0.00	117.83	117.83	0.00
633	-2.56	-2.55	-0.39	-121.77	-121.76	-0.01	117.82	117.83	-0.01
634(XF13)	-3.23	-3.23	0.00	-122.22	-122.22	0.00	117.34	117.35	-0.01
645	-	-	-	-121.9	-121.90	0.00	117.86	117.86	0.00
646	-	-	-	-121.98	-121.97	-0.01	117.9	117.91	-0.01
671	-5.30	-5.30	0.00	-122.34	-122.33	-0.01	116.02	116.03	-0.01
680	-5.30	-5.30	0.00	-122.34	-122.33	-0.01	116.02	116.03	-0.01
684	-5.32	-5.32	0.00	-	-	-	115.92	115.93	-0.01
611	-	-	-	-	-	-	115.78	115.78	0.00
652	-5.25	-5.25	0.00	-	-	-	-	_	-
692	-5.31	-5.30	-0.19	-122.34	-122.33	-0.01	116.02	116.03	-0.01
675	-5.56	-5.55	-0.18	-122.52	-122.51	-0.01	116.03	116.04	-0.01

Table 2: Bus Voltage Angle Comparison

This document and the information within it are confidential and proprietary to ETAP/Operation Technology, Inc. and may not be modified, copied, published, disclosed, distributed, displayed or exhibited in either electronic or printed formats without the written authorization of ETAP/Operation Technology, Inc., 17 Goodyear, Irvine, CA 92618, USA. © 1986-2023 ETAP/Operation Technology, Inc. All Rights Reserved.

OPERATION TECHNOLOGY, INC. – ETAP Group of Companies

To model the distributed load along node "Bus632" to node "Bus671", the loading is equally connected at each end of the line segment (Line601_22), i.e. Lump9 and Lump7. Therefore, the current flows going from Bus632 to Bus671 and vice-versa are the following:

¹ 632-671:

² 671 - 632

Phase A: $474.16 \angle -26.94 + 4.02 \angle -32.96 = 478.16 \angle -27.01$ Phase B: $200.44 \angle -133.37 + 15.2 \angle -151.65 = 214.93 \angle -134.64$ Phase C: $448.23 \angle 100.67 + 27.7 \angle 87.67 = 475.26 \angle 99.92$ Phase A: $474.16 \angle 153.06 + 4.15 \angle -35.76 = 470.06 \angle -26.86$ Phase B: $200.44 \angle 46.63 + 15.06 \angle -152.27 = 186.27 \angle 48.13$ Phase C: $448.23 \angle -79.33 + 28.84 \angle 85.86 = 420.41 \angle -78.33$

	Current Flow in Amperes									
	Phase A			Phase B			Phase C			
Bus		IEEE	ETAP	%Diff	IEEE	ETAP	%Diff	IEEE	ETAP	% Diff
611	611	-	-	-	-	-	-	71.15	71.19	-0.06
632	RG60	558.41	558.14	-0.05	414.87	414.63	-0.06	586.60	586.31	-0.05
632	633	81.33	81.25	-0.10	61.12	61.12	0.00	62.70	62.73	-0.05
632	645	-	-	-	143.02	142.97	-0.03	65.21	65.15	-0.09
¹ 632	671	478.29	478.16	-0.03	215.12	214.93	-0.09	475.50	475.26	-0.09
633	632	81.33	81.25	-0.10	61.12	61.12	0.00	62.71	62.73	-0.03
633	634	81.33	81.25	-0.10	61.12	61.12	0.00	62.71	62.73	-0.03
634	633	704.83	704.19	-0.09	529.73	529.72	0.00	543.45	543.64	-0.03
645	632	-	-	-	143.02	142.97	-0.03	65.21	65.15	-0.09
645	-646	-	-	-	65.21	65.15	-0.09	65.21	65.15	-0.09
646	645	-	-	-	65.21	65.15	-0.09	65.21	65.15	-0.09
652	684	63.08	63.03	-0.08	-	-	-	-	-	-
² 671	632	470.2	470.06	-0.03	186.41	186.27	-0.08	420.64	420.41	-0.05
671	-680	-	-	-	-	-	-	-	-	-
671	-684	63.07	63.03	-0.06	-	-	-	71.15	71.19	-0.06
671	-692	229.11	229.12	0.00	69.61	69.59	-0.03	178.38	178.27	-0.06
675	692	205.33	205.37	-0.02	69.59	69.59	0.00	124.07	124.06	-0.01
680	671	-	-	-	-	-	-	-	-	-
684	671	63.07	63.03	-0.06	-	-	-	71.15	71.19	-0.06
674	611	-	-	-	-	-	-	71.15	71.19	-0.06
674	652	63.07	63.03	-0.06	-	-	-	-	-	-
692	671	229.11	229.12	0.00	69.61	69.59	-0.03	178.38	178.27	-0.06
692	675	205.33	205.37	-0.02	69.61	69.59	-0.03	124.07	124.06	-0.01

Table 3: Flow results comparison

Reference

- 1. IEEE Distribution System Analysis Subcommittee for an IEEE 13-bus feeder system found on <u>https://cmte.ieee.org/pes-testfeeders/resources/.</u>
- 2. ETAP Unbalanced Load Flow V&V Documents, Case Number TCS-ULF-02

This document and the information within it are confidential and proprietary to ETAP/Operation Technology, Inc. and may not be modified, copied, published, disclosed, distributed, displayed or exhibited in either electronic or printed formats without the written authorization of ETAP/Operation Technology, Inc., 17 Goodyear, Irvine, CA 92618, USA. © 1986-2023 ETAP/Operation Technology, Inc. All Rights Reserved.

OPERATION TECHNOLOGY, INC. – ETAP Group of Companies