

Les nouveautés de la NF C 15-100-2024

Ce qu'il faut savoir pour rester conforme

Objectif du document :

Ce document a pour but de vous informer et de vous guider dans l'adoption des nouvelles règles introduites par la série de normes composant la NF C 15-100-2024.

Les installations concernées :

 Tous les nouveaux bâtiments dont le permis de construire a été déposé après la date de parution de la norme 21/08/2024.

Les enjeux majeurs :

- Harmonisation
- · Innovation Technologique
- Sécurité accrue
- · Conformité à la transition énergétique

Tous les anciens bâtiments, ayant subi une rénovation totale ou importante nécessitant le passage d'un bureau d'étude.

Une nouvelle forme de la norme :

Avant: Un document de 515 pages

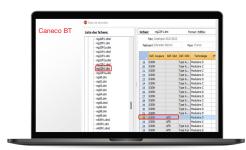
Après: une série de 21 Normes conformes aux documents d'harmonisation du CENELEC (HD) et aux Normes internationales (IEC):

- NF C 15-100-1 (Titre 1 à 6)
- NF C 15-100-7-7XXX
- NF C 15-100-8-1
- NF C 15-100-10
- NF C 15-100-11

Partie 4-42 (421.7): Intégration avec des dispositions relatives aux AFDDs

Les AFDDs (Arc Fault Detection Devices) sont des équipements électroniques. Ils surveillent en permanence la forme d'onde du courant circulant dans un circuit. Ils détectent les arcs dangereux et interrompent l'alimentation du circuit avant que la première flamme ne se déclare. Conformément à la norme IEC 62606, les AFDDs doivent réagir rapidement et isoler le circuit dans un délai limité.

Où les défauts d'arcs peuvent se produire:


Domaines d'application:

Partie 4-42 (421.9): Intégration des Euroclasses de réaction au feu pour les conducteurs isolés et câbles (soumis au Règlement des Produits de Construction (RPC)):

Classe B2 - s1a, d1, a1

Câbles à performance optimale pour répondre au risque incendie lorsque les conséquences (fumées, gaz), seraient les plus dramatiques.

Classe C_{ca}-s1, d1, a1

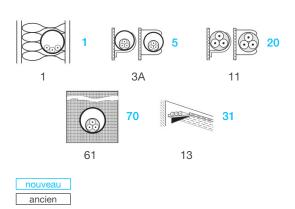
Câbles de protection au feu, à performance améliorée, qui limitent les dégagements de fumées opaques et toxiques.

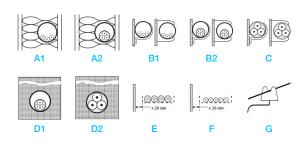
Classe D -s2, d2, a2

Câbles de communication à performance au feu basique, spécifiques par leur installation en «faisceaux».

Classe E

Câbles d'énergie à performance au feu basique, non propagateurs de la flamme.


Les conducteurs et les câbles C3 ou Fca sont désormais interdits dans les ouvrages de construction (voir 520.4.2).



Partie 5-52 (521): Nouvelles numérotations des modes de pose : nouvelles méthodes de référence:

Nouveau! Les modes de poses reprennent la numérotation de l'IEC : pas d'ajouts, une suppression et des notions dimensionnelles à prendre en compte.

Réf.	Mode pose	Description
1 (1)	20.3 De	Câbles mono ou multiconducteurs sur des chemins de câbles perforés horizontaux ou verticaux ^{a b} .
12 (71)	203 De	Cábles mono ou multiconducteurs sur des treillis horizontaux ou verticaux ^a b ou des corbeaux.
34 (16)	= 00 = = = 00 = = 00 = = 00 = = 00 = = 00 = = 00 = 0	Câbles mono ou multiconducteurs suspendus sur échelles à câbles.

La NF C 15-100-5-52 définit 10 méthodes d'installation distinctes. Les méthodes de référence désignent les configurations d'installation, dont la capacité de transport de courant a été déterminée par des essais.

Les indices 1,2 de l'IEC s 'appuie sur la nature des conducteurs ou câbles alors que la NFC 15-100-1 introduit une nouvelle variable liée à la hauteur disponible du cheminement.

Intensité admissible (A)											
E Multi- conducteu	r	PV C2	PR 2	PV C3	PR3						
F Mono- conducteu	r					PV C2	PR 2	PV C3 (on tridle)	PR3 (on tridito)	PVC 3 c) (en nappe)	PR 3 c)
Section											
0	1,5	22	26	18,5	23	23	-	19,5	24	-	-
Cuivre	2,5	30	36	25	32	31	-	27	33	-	-
	4	40	49	34	42	42	-	36	45	-	-
	6	51	63	43	54	54	-	46	58	-	-
	10	70	86	60	75	75	-	63	80	-	-
	16	94	115	80	100	100	-	85	107	-	-
	25	119	149	101	127	131	161	110	135	114	141
	35	148	185	126	158	162	200	137	169	143	176
	50	180	225	153	192	196	242	167	207	174	216
	70	232	289	196	246	251	310	216	268	225	279
	95	282	352	238	298	304	377	264	328	275	342
	120	328	410	276	346	352	437	308	383	321	400
	150	379	473	319	399	406	504	356	444	372	464
	185	434	542	364	456	463	575	409	510	427	533
	240	514	641	430	538	546	679	485	607	507	634
	300	593	741	497	621	629	783	561	703	587	736
	400	-	-	-	-	754	940	656	823	689	868

Partie 5-52 (523): Modification des tableaux de calcul d'intensité admissible et des modes de poses.

Passage de 2 tableaux d'intensité admissibles 52H et 52J à 9 tableaux 52.8.A à 52.8H.2:

1 tableau d'Iz par méthode de référence

Exemple: Tableau 52.8A

Intensité admissible (A)							
Sect	ion	PVC 3	PVC 2	PR 3	PR 2		
	1.5	13.5	14.5	17	19		
	2.5	18	19.5	23	26		
	4	24	26	31	35		
CUIVRE	6	31	34	40	45		
	10	42	46	54	61		
	16	56	61	73	81		
	25	73	80	95	106		
	35	89	99	117	131		
	50	108	119	141	158		
	70	136	151	179	200		
	95	164	182	216	241		

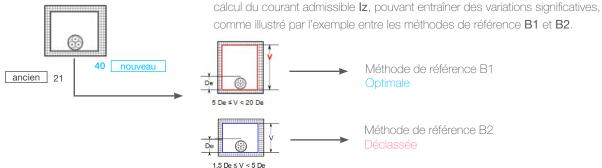
Réf.	Mode pose	Description		
1 (1)		Conducteurs isolés ou câbles monoconducteurs dans des conduits noyés dans les parois thermiquement isolantes.		
12 (71)		Conducteurs isolés ou câbles monoconducteurs dans des plinthes ou des moulures en bois.		

Nouvelles dispositions sur la tolérance sur les courants admissibles (lz)

La tolérance de 5% sur les valeurs des courants admissibles est autorisée pour le choix de la section des conducteurs

SAUF pour:

- Les poses en nappe (Tableau 52.8F: méthodes de référence E ou F): modes de pose 31, 32, 34 et 35.
- L'ensemble des poses du Tableau 52.8H.2 (méthode de référence D2: modes de pose 72 et 73).



Partie 5-52 (529.4): Nouvelles notions dimensionnelles sur les modes de pose (V):

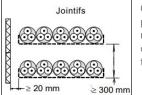
Les modes de pose concernés: 40,41, 42, 43, 44, 45, 46, 47 et 54, sont classés dans la catégorie vides de construction ou noyés dans la construction.

Exemple: Mode de pose 40

Qu'est-ce que ces nouvelles données impliquent au niveau de l'utilisateur?

Elles sont très importantes car elles conditionnent le choix d'une méthode de référence, qui conditionnent elle-même un calcul d'IZ qui peut être diffèrent.

Ci-joint un tableau qui dans notre cas exemple montre le delta en % de la prise en compte d'une méthode de référence B1 vis-à-vis d'une méthode de référence B2.


	PVC 3	PVC 2	PR 3	PR 2
		-		5%
1,5	3%	6%	3%	
2,5	5%	4%	8%	3%
4	4%	7%	6%	5%
6	6%	8%	9%	6%
10	9%	10%	10%	9%
16	10%	10%	10%	10%
25	11%	12%	11%	12%
35	11%	13%	13%	12%
50	14%	14%	14%	13%
70	15%	14%	14%	14%
95	16%			
120	16%			
150	16%		14%	
185	16%		13%	
240	16%		13%	
300	16%		13%	13%
400				
500				16%
630				

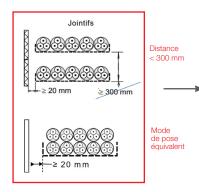
Le choix de la méthode de référence est crucial, car il influence directement le

Partie 5-52 (523.5): Nouvelles notions dimensionnelles sur les modes de pose de type tablettes:

Mode de pose de référence E (tableau 52.13) et F (Tableau 52.14) du Tableau 52.8F

Respect des distances entre tablettes 🤝

Coefficient de proximité et respect de la distance entre tablettes


Nombre de tablettes	Nom de câble par tablettes ou échelles						
ou d'échelles	1	2	3	4	6	9	
1 2 3 6	1,00 1,00 1,00 1,00	0,88 0,87 0,86 0,84	0,82 - 0,80 - 0,79 - 0,77	0,79 0,77 0,76 0,73	0,76 0,73 0,71 0,68	0,73 0,68 0,66 0,64	

Non respect des distances entre tablettes X

Nombre de tablettes		Nom de câble par tablettes ou échelles						
ou d'échelles	1	2	3	4	6 9			
1 2 3 6	1,00 1,00 1,00 1,00	0,88 0,87 0,86 0,84	0,82 0,80 0,79 0,77	0,79 0,77 0,76 0,73	0,76 0,73 0,71 0,68	0,73 0,68 0,66 0,64		

Nombre de couches	1	2	3	6à8	9 et plus
Coefficient	1,00	0,80	0,73	0,68	0,66

Non respect de la distance entre tablettes 0,76x0,8=0,61

Partie 5-52 (524.2): Dimensionnement du conducteur neutre en présence des courants harmoniques:

Avant $0 < TH \le 15\%$

15% < TH ≤ 33%

TH > 33%

Après 0 < TH ≤ 15%

15% < TH ≤ 33%

33% < TH ≤ 45%

TH > 45%

D	41.5	100		
Pas	ae	cna	naer	nent

	Circuit monophasé	Circuit triphasés + neutre (câbles multiconducteurs)	Circuit triphasés + neutre (câbles monoconducteurs)	Cas	
0 < TH 3 ≤ 15% (4)		IB neutre < IB/2 (3) Sneutre < Sphase admis avec neutre protégé	IB neutre < IB/2 (3) Sneutre < Sphase admis avec neutre protégé	1	Pas de changement
15% < TH 3 ≤ 33% (1)	IB neutre	IB phase = IB/0,86 Sneutre = Sphase	IB phase = IB/0,86 Sneutre = Sphase	2	Changement mineur
33% < TH 3 ≤45% (2)	= IB	IB neutre = IB x TH 3x3 /0,86 Sphase = Sneutre	IB neutre = IB x TH 3x3 /0,86 Sphase > Sneutre	3	Changement majour
TH 3 > 45%		IB neutre = IB x TH 3x3 Sphase = Sneutre	IB neutre = IB x TH 3x3 /0,86 Sneutre> Sphase	4	Changement majeur

33 % < TH3 ≤ 45%

- Le coefficient de 0,84 suit la tendance à 0,86
- Le taux d'harmonique de rang 3 DOIT être estimé pour le dimensionnement.

TH3 > 45%

1. Le coefficient de 0,84 suit la tendance à 0,86 mais n'est pas affecté systématiquement!!!

Dans le cas de câbles multiconducteurs et un TH3 de 45%:

- Le courant dans le neutre est supérieur à 135 % du courant de phase, les sections de phase sont dimensionnées sur la base du courant neutre, les trois conducteurs de phase ne seront pas entièrement chargés 0.86.
- 2. Le taux d'harmonique de rang 3 DOIT être estimé pour le dimensionnement (pour les câbles multiconducteurs).

le calcul de IB ne change pas et le coefficient de 0,86 lié au neutre déséquilibré est toujours affecté au calcul de l'z

